GB

cho đường tròn (O;R) ,điểm A nằm bên ngoài đường tròn .kẻ các tiếp tuyến AM,AN với đường tròn (O;R) (với M,N là các tiếp điểm)

a. nếu cho R=3cm và AO=5cm.tính chu vi tứ giác AMON và MN

b. từ O kẻ đường thẳng d vuông góc với OM.đường thẳng d cắt AN tại S.cm SA=SO

NT
23 tháng 11 2023 lúc 21:57

a: Gọi giao điểm của MN với OA là H

Xét (O) có

AM,AN là tiếp tuyến

Do đó: AM=AN và AO là phân giác của \(\widehat{MAN}\)

AO là phân giác của góc MAN

=>\(\widehat{MAO}=\widehat{NAO}\)

OM=ON

=>O nằm trên đường trung trực của MN(1)

AM=AN

=>A nằm trên đường trung trực của MN(2)

Từ (1) và (2) suy ra AO là đường trung trực của MN

=>AO vuông góc với MN tại trung điểm của MN

=>AO vuông góc với MN tại H và H là trung điểm của MN

ΔAMO vuông tại M

=>\(MA^2+MO^2=OA^2\)

=>\(MA^2+3^2=5^2\)

=>\(MA^2=5^2-3^2=16\)

=>MA=4(cm)

Chu vi tứ giác OMAN là:

OM+MA+AN+ON

=3+4+4+3

=6+8=14(cm)

Xét ΔOMA vuông tại M có MH là đường cao

nên \(MH\cdot OA=MO\cdot MA\)

=>\(MH\cdot5=3\cdot4=12\)

=>MH=2,4(cm)

H là trung điểm của MN

=>MN=2*MH

=>MN=2*2,4

=>MN=4,8(cm)

b: SO\(\perp\)OM

MA\(\perp\)OM

Do đó: SO//MA

=>\(\widehat{SOA}=\widehat{MAO}\)

mà \(\widehat{MAO}=\widehat{NAO}\)(cmt)

nên \(\widehat{SOA}=\widehat{MAO}=\widehat{NAO}\)

=>\(\widehat{SOA}=\widehat{SAO}\)

=>SA=SO

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
HN
Xem chi tiết
PB
Xem chi tiết
DH
Xem chi tiết
NL
Xem chi tiết
NT
Xem chi tiết