Ôn tập Đường tròn

MQ

cho đường tròn (O) bán kính R , đường thẳng d không đi qua O và cắt đường tròn tại 2 điểm A và B, từ 1 điểm C thuộc đường thẳng d, A nằm giữa B và C, vẽ tiếp tuyến CN với đường tròn , N thuộc cung lớn AB . Gọi E là trung điểm của AB 

a) cm 4 điểm C,E,O,N cùng thuộc 1 đường tròn

b) cm CN2 = CA.CB

c) Gọi H là hình chiếu của N trên OC . cm ˆOABOAB^ˆCHACHA^.

Tia CO cắt đường tròn (O) tại 2 điểm D,I , I nằm giữa C và D. Cm IC.DH = DC.IH

NT
26 tháng 1 2024 lúc 23:26

a: Ta có: ΔOAB cân tại O

mà OE là đường cao

nên OE\(\perp\)AB

Xét tứ giác OECN có \(\widehat{OEC}+\widehat{ONC}=90^0+90^0=180^0\)

nên OECN  là tứ giác nội tiếp

=>O,E,C,N cùng thuộc một đường tròn

b: Xét (O) có

\(\widehat{CNA}\) là góc tạo bởi tiếp tuyến NC và dây cung NA

\(\widehat{ABN}\) là góc nội tiếp chắn cung AN

Do đó: \(\widehat{CNA}=\widehat{ABN}\)

Xét ΔCNA và ΔCBN có

\(\widehat{CNA}=\widehat{CBN}\)

\(\widehat{NCA}\) chung

Do đó: ΔCNA~ΔCBN

=>\(\dfrac{CN}{CB}=\dfrac{CA}{CN}\)

=>\(CN^2=CA\cdot CB\)

c: Xét ΔOCN vuông tại N có NH là đường cao

nên \(CH\cdot CO=CN^2\)

=>\(CH\cdot CO=CA\cdot CB\)

=>\(\dfrac{CH}{CB}=\dfrac{CA}{CO}\)

Xét ΔCHA và ΔCBO có

\(\dfrac{CH}{CB}=\dfrac{CA}{CO}\)

\(\widehat{HCA}\) chung

Do đó: ΔCHA~ΔCBO

=>\(\widehat{CHA}=\widehat{CBO}\)

mà \(\widehat{CBO}=\widehat{OAB}\)(ΔOAB cân tại O)

nên \(\widehat{CHA}=\widehat{OAB}\)

 

Bình luận (0)

Các câu hỏi tương tự
LM
Xem chi tiết
H24
Xem chi tiết
NQ
Xem chi tiết
TA
Xem chi tiết
MN
Xem chi tiết
NC
Xem chi tiết
TL
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết