Ôn tập Đường tròn

PM

cho dường tròn O bán kính R đường kính AB, AC =R

a) chứng minh tam giác ABC vuông

b)tìm số đo góc B của tam giác ABC

c) gọi M là trung điểm của BC. qua  vẽ tiếp tuyến Bx với đường tròn, tiếp tuyến này cắt tia OM tại N.CM NC là tiếp tuyến cảu đường tròn (O)

NT
10 tháng 1 2021 lúc 21:03

a) Xét (O) có

ΔABC nội tiếp đường tròn(A,B,C∈(O))

AB là đường kính

Do đó: ΔABC vuông tại C(Định lí)

b) Xét ΔABC vuông tại C có

\(\sin\widehat{ABC}=\dfrac{AC}{AB}=\dfrac{R}{2R}=\dfrac{1}{2}\)

hay \(\widehat{ABC}=30^0\)

Vậy: \(\widehat{ABC}=30^0\)

c)

Xét ΔOBC có OB=OC(=R)

nên ΔOBC cân tại O(Định nghĩa tam giác cân)

Xét ΔOBC cân tại O có OM là đường trung tuyến ứng với cạnh đáy BC(M là trung điểm của BC)

nên OM là đường phân giác ứng với cạnh BC(Định lí tam giác cân)

\(\widehat{BOM}=\widehat{COM}\)

hay \(\widehat{BON}=\widehat{CON}\)

Xét ΔBON và ΔCON có 

OB=OC(=R)

\(\widehat{BON}=\widehat{CON}\)(cmt)

ON chung

Do đó: ΔBON=ΔCON(c-g-c)

\(\widehat{OBN}=\widehat{OCN}\)(hai góc tương ứng)

mà \(\widehat{OBN}=90^0\)(NB⊥OB tại B)

nên \(\widehat{OCN}=90^0\)

hay NC⊥OC tại C

Xét (O) có 

OC là bán kính

NC⊥OC tại C(cmt)

Do đó: NC là tiếp tuyến của (O)(Dấu hiệu nhận biết tiếp tuyến đường tròn)

Bình luận (0)

Các câu hỏi tương tự
TQ
Xem chi tiết
NS
Xem chi tiết
GN
Xem chi tiết
LD
Xem chi tiết
LN
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết