Bài 2. PHƯƠNG TRÌNH ĐƯỜNG TRÒN

NP

Cho đường tròn (C) x2+y2-2x+2y-23=0
Lập phương trình đường thẳng D biết
D đi qua N(7;3) và cắt đường tròn (C) tại hai điểm phân biệt ,EF sao cho NE=3NF

NL
5 tháng 5 2020 lúc 15:02

Đường tròn tâm \(I\left(1;-1\right)\) bán kính \(R=5\)

\(\overrightarrow{IN}=\left(6;4\right)\Rightarrow IN=2\sqrt{13}>R\Rightarrow N\) nằm ngoài đường tròn

Theo tính chất phương tích:

\(NE.NF=IN^2-R^2=27\)

\(\Rightarrow3NF^2=27\Rightarrow\left\{{}\begin{matrix}NF=3\\NE=9\end{matrix}\right.\) \(\Rightarrow EF=6\)

\(\Rightarrow d\left(I;EF\right)=\sqrt{R^2-\left(\frac{EF}{2}\right)^2}=4\)

Gọi phương trình d có dạng \(a\left(x-7\right)+b\left(y-3\right)=0\)

\(\Leftrightarrow ax+by-7a-3b=0\)

\(d\left(I;d\right)=4\Leftrightarrow\frac{\left|a-b-7a-3b\right|}{\sqrt{a^2+b^2}}=4\)

\(\Leftrightarrow\left|3a+2b\right|=2\sqrt{a^2+b^2}\)

\(\Leftrightarrow9a^2+12ab+4b^2=4a^2+8ab+4b^2\)

\(\Leftrightarrow5a^2+4ab=0\Rightarrow\left[{}\begin{matrix}a=0\\5a=-4b\end{matrix}\right.\) chọn \(\left(a;b\right)=\left(4;-5\right)\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}y-3=0\\4x-5y-13=0\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
NP
Xem chi tiết
NP
Xem chi tiết
H24
Xem chi tiết
DD
Xem chi tiết
NA
Xem chi tiết
LN
Xem chi tiết
DL
Xem chi tiết
DL
Xem chi tiết
ND
Xem chi tiết