Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bài 5. ÔN TẬP CUỐI NĂM

CC

Cho đường tròn (C): x^2 + y^2 +10x-8y+1=0 và d:-x+y-5=0
a) Qua điểm M thuộc d kẻ tiếp tuyến MA,MB
Tìm M sao cho diện tích tam giác IAB lớn nhất (I là tâm đường tròn)
b) Tim P thuộc d sao cho diện tích PAI=3√10, A tiếp điểm các tiếp tuyến từ P.

NL
23 tháng 6 2020 lúc 6:55

Đường tròn tâm \(I\left(-5;4\right)\) bán kính \(R=2\sqrt{10}\)

Ta có: \(S_{IAB}=\frac{1}{2}IA.IB.sin\widehat{AIB}=\frac{1}{2}R^2.sin\widehat{AIB}\le\frac{1}{2}R^2\)

\(\Rightarrow S_{max}\) khi \(sin\widehat{AIB}=1\Leftrightarrow AI\perp BI\Rightarrow AB=R\sqrt{2}=4\sqrt{5}\)

Khi đó \(MAIB\) là hình vuông

\(\Rightarrow IM=AB=4\sqrt{5}\)

Do M thuộc d nên tọa độ có dạng: \(M\left(m;m+5\right)\Rightarrow\overrightarrow{IM}=\left(m+5;m+1\right)\)

\(\Rightarrow\left(m+5\right)^2+\left(m+1\right)^2=80\)

\(\Leftrightarrow m^2+6m-27=0\Rightarrow\left[{}\begin{matrix}m=3\\m=-9\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}M\left(3;8\right)\\M\left(-9;-4\right)\end{matrix}\right.\)

b/ Gọi \(P\left(a;a+5\right)\Rightarrow\overrightarrow{IP}=\left(a+5;a+1\right)\)

Ta có: \(S_{PAI}=\frac{1}{2}AI.AP=\frac{1}{2}R.\sqrt{IP^2-R^2}=3\sqrt{10}\)

\(\Leftrightarrow\sqrt{10}.\sqrt{IP^2-40}=3\sqrt{10}\)

\(\Leftrightarrow IP^2=49\Leftrightarrow\left(a+5\right)^2+\left(a+1\right)^2=49\)

\(\Leftrightarrow2a^2+12a-23=0\Rightarrow a=\frac{-6\pm\sqrt{82}}{2}\Rightarrow P...\)

Bình luận (0)

Các câu hỏi tương tự
HH
Xem chi tiết
AH
Xem chi tiết
AM
Xem chi tiết
LT
Xem chi tiết
CT
Xem chi tiết
ND
Xem chi tiết
GK
Xem chi tiết
BM
Xem chi tiết
DN
Xem chi tiết