a: Số giao điểm là: 7*6=42(giao)
b: Số hình bình hành tạo thành là: \(C^2_7\cdot C^2_6=315\left(hình\right)\)
a: Số giao điểm là: 7*6=42(giao)
b: Số hình bình hành tạo thành là: \(C^2_7\cdot C^2_6=315\left(hình\right)\)
Trên mặt phẳng có 2017 đường thẳng song song với nhau và 2018 đường thẳng song song khác cùng cắt nhóm 2017 đường thẳng đó. Đếm số hình bình hành nhiều nhất được tạo thành có đỉnh là các giao điểm nói trên
A. 2017.2018
B.
C.
D. 2017+ 2018
Cho hình bình hành ABCD nằm trong mặt phẳng (P) và một điểm S nằm ngoài mặt phẳng (P). Gọi M là điểm nằm giữa S và A; N là điểm nằm giữa S và B; giao điểm của hai đường thẳng AC và BD là O; giao điểm của hai đường thẳng CM và SO là I; giao điểm của hai đường thẳng NI và SD là J. Tìm giao điểm của mp(CMN) với đường thẳng SO là:
A. A
B. J
C. I
D. B
Cho hình bình hành ABCD nằm trong mặt phẳng (P) và một điểm S nằm ngoài mặt phẳng (P). Gọi M là điểm nằm giữa S và A; N là điểm nằm giữa S và B; giao điểm của hai đường thẳng AC và BD là O; giao điểm của hai đường thẳng CM và SO là I; giao điểm của hai đường thẳng NI và SD là J. Xác định giao tuyến của hai mặt phẳng (SAD) và (CMN) là:
A. NI
B. MJ
C. NJ
D. MI
Cho hai đường thẳng d1 và d2 song song với nhau. Trên d1 có 10 điểm phân biệt, trên d2 có n điểm phân biệt n ≥ 2 . Biết có 2800 tam giác có đỉnh là các điểm nói trên. Tìm n?
A. 20
B. 21
C. 30
D. 32
Cho hai đường thẳng d 1 và d 2 song song với nhau. Trên d 1 có 10 điểm phân biệt, trên d 2 có n điểm phân biệt ( n ≥ 2 ). Biết có 2800 tam giác có đỉnh là các điểm nói trên. Tìm n?
A. 16
B. 21
C. 30
D. 20
Trong các cách sau, có bao nhiêu cách để xác định một mặt phẳng
1. Đi qua 3 điểm phân biệt
2. Đi qua 1 điểm và chứa 1 đường thẳng không đi qua điểm đó
3. Đi qua 2 đường thẳng bất kì
4. Đi qua đường thẳng (d1) và song song với đường thẳng (d2) cho trước, sao cho d1 và d2 không cắt nhau
5. Song song với 2 đường thẳng cắt nhau
6. Song song với 2 đường thẳng chéo nhau
7. Đi qua 1 điểm và song song với một đường thẳng cho trước
8. Đi qua 1 điểm và song song với một mặt phẳng cho trước
A. 2
B. 3
C. 4
D. 5
Cho hai hình thang ABCD và ABEF có chung đáy lớn AB và không cùng nằm trong một mặt phẳng.
a) Tìm giao tuyến của các mặt phẳng sau: (AEC) và (BFD), (BCE) và (ADF).
b) Lấy điểm M thuộc đoạn DF. Tìm giao điểm của đường thẳng AM với mặt phẳng (BCE).
c) Chứng minh hai đường thẳng AC và BF không cắt nhau.
Cho hai đường thẳng d1 và d2 song song với nhau. Trên d1 có 10 điểm phân biệt, trên d2 có n điểm phân biệt ( n ≥ 2 ) Biết rằng có 5700 tam giác có đỉnh là các điểm nói trên. Tìm giá trị của n
A. 21
B. 30
C. 32
D. 20
Cho hai đường thẳng d1 và d2 song song với nhau. Trên d1 có 10 điểm phân biệt, trên d2 có n điểm phân biệt (n ≥ 2) Biết rằng có 5700 tam giác có đỉnh là các điểm nói trên. Tìm giá trị của n
A. 21
B. 30
C. 32
D. 20
cho hình bình hành ABCD và ABMN không đồng phẳng . Tìm số giao điểm của mặt phẳng (ABCD) với các đường thẳng sau
a) Vẽ hình
b) đường thẳng CD
c) đường thẳng BD
d) đường thẳng BN
e) đường thẳng AD