Xét ΔACD và ΔBCD co
AC=BC
CD chung
AD=BD
=>ΔACD=ΔBCD
Xét ΔACD và ΔBCD co
AC=BC
CD chung
AD=BD
=>ΔACD=ΔBCD
Cho tam giác ABC có góc A nhỏ hơn 90 độ. Trên nửa mặt phẳng bờ AB không chứa điểm C vẽ đoạn thẳng AM sao cho AM vuông góc với AB và AM = AB,trên nửa mặt phẳng bờ AC không chứa điểm B vẽ đoạn thẳng AN vuông góc với AC và AN = AC
a,CMR
b,CM
c,Kẻ . CM AH đi qua trung điểm của MN
Cho tam giác ABC có góc A nhỏ hơn 90 độ. Trên nửa mặt phẳng bờ AB không chứa điểm C vẽ đoạn thẳng AM sao cho AM vuông góc với AB và AM = AB,trên nửa mặt phẳng bờ AC không chứa điểm B vẽ đoạn thẳng AN vuông góc với AC và AN = AC
a,CMR
b,CM
Cho tam giác ABC có AB=AC, gọi I là trung điểm của BC
a) Chứng minh
b) Trên tia đối của tia IA lấy điểm D sao cho IA = ID. Chứng minh AB=CD .
c) Trên một nửa mặt phẳng bờ là đường thẳng BC không chứa điểm A, kẻ đường thẳng BE vuông góc BC sao cho BE = AI. Gọi O là trung điểm của BI. Chứng minh 3 điểm A,O,E thẳng hàng .
Cho ΔABC có cạnh AB = AC, M là trung điểm của BC.
a) Chứng minh Δ ABM = Δ ACM.
b) Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Chứng minh AC = BD.
c) Chứng minh AB // CD
d) Trên nửa mặt phẳng bờ là AC không chứa điểm B, vẽ tia Ax // BC lấy điểm I∈ Ax sao cho AI = BC. Chứng minh 3 điểm D, C, I thẳng hàng.
cho đoạn thẳng ab và điểm c nằm giữa a và b. trên cùng một nửa mặt phẳng bờ ab vẽ hai tam giác đều acd và bce . gọi m và n lần lượt là trung điểm của ae và bd . chứng minh rằng
a) ae= bd
b) tam giác cme=tam giác cnb
c) tam giác mnc là tam giác đều
Cho M là trung điiểm của đoạn thẳng Bc . Trên hai nửa mặt phẳng đối nhau bờ là BC lấy điểm a và d sao cho ac = ab và db = dc a) chứng minh tam giác DMB = tam giác DMC . Chứng minh góc ABD = góc ACD . c) Chứng minh ba điểm a ; m ; d thẳng hàng
Cho đoạn thẳng AB và điểm C nằm giữa A và B. Trên cùng một nửa mặt phẳng bờ AB vẽ 2 tam giác đều ACD và BEC. Gọi M, N lần lượt là trung điểm của AE và BD. Chứng minh :
a) AE=BD
b) Tam giác MCN là tam giác đều
Cho đoạn thẳng AB. Trên cùng một nửa mặt phẳng có bờ là đường thẳng AB vẽ hai tia Ax và By lần lượt vuông góc với AB tại A và B. Gọi O là trung điểm của đoạn thẳng AB. Trên tia Ax lấy điểm C và trên tia By lấy điểm D sao cho góc COD=90 độ.
a) Chúng minh rằng AC+BD=CD
b) Chứng minh rằng AC.BC=AB^2/4
Cho đoạn thẳng AB và điểm C nằm giữa A và B. Trên cùng một nửa mặt phẳng bờ AB vẽ hai tam giác đều ACD và BCE.Gọi M và N lần lượt là trung điểm của AE và BD. Chứng minh rằng:
a/ AE = BD
b/ tam giác CME=tam giác CNB
c/ tam giác MNC là tam giác đều