Bài 8: Các trường hợp đồng dạng của tam giác vuông

HL

Cho đoạn thẳng AB, gọi O là trung điểm của đoạn thằng AB.Vẽ về cùng 1 phía của AB các tia Ax, By vuông góc với AB. Lấy C trên Ax, d trên tia By sao cho góc COD=90 độ
a, chứng minh tam giác ACO đồng dạng tam giác BDO
b,chứng minh CD=AC+BD c, kẻ OM vuông góc với CD tại M, gọi N là giao điểm của AD và BC
c,Chứng minh MN song song với AC
mọi người giúp mình câu c với, a,b mình làm đc rồi

 

NT
9 tháng 7 2023 lúc 14:36

Gọi giao của CO với DB là E

a: Xét ΔOAC vuông tại A và ΔOBE vuông tại B có

OA=OB

góc AOC=góc BOE

=>ΔOAC=ΔOBE

=>AC=BE và OD=OE

Xét ΔACO vuông tại A và ΔBDO vuông tại B có

góc ACO=góc BDO(=góc DCO)

=>ΔACO đồng dạng với ΔBDO

b: Xét ΔDCE có

DO vừa là đường cao, vừa là trung tuyến

=>ΔDCE cân tại D

=>DE=DC

=>DC=DB+BE=DB+AC

c; Xét ΔNAC vàΔNDB có

góc NAC=góc NDB

góc ANC=góc DNB

=>ΔNAC đồng dạng với ΔNDB

=>NA/ND=AC/BD=CM/MD

=>MN//AC

Bình luận (0)

Các câu hỏi tương tự
MD
Xem chi tiết
AP
Xem chi tiết
VV
Xem chi tiết
H24
Xem chi tiết
MD
Xem chi tiết
H24
Xem chi tiết
VK
Xem chi tiết
NA
Xem chi tiết
QT
Xem chi tiết