Ôn tập Tam giác

VK

Cho \(\Delta\)ABC cân tại A, đường trung tuyến AM ( M\(\in\)BC) biết AB=13 cm, BC= 10cm

a. Chứng minh \(\Delta\)AMB = \(\Delta\)AMC

b. Gọi G là trọng tâm của tam giác ABC. Tính độ dài AG.

AH
29 tháng 4 2018 lúc 16:06

Lời giải:

a)

Vì tam giác $ABC$ cân tại $A$ nên $AB=AC$ và \(\widehat{ABC}=\widehat{ACB}\) hay \(\widehat{ABM}=\widehat{ACM}\)

Xét tam giác $AMB$ và $AMC$ có:

\(\left\{\begin{matrix} \widehat{ABM}=\widehat{ACM}\\ BM=CM\\ AB=AC\end{matrix}\right.\Rightarrow \triangle AMB=\triangle AMC(c.g.c)\)

b) Từ hai tam giác bằng nhau trên suy ra \(\widehat{AMB}=\widehat{AMC}\)

\(\widehat{AMB}+\widehat{AMC}=\widehat{BMC}=180^0\)

Suy ra \(\widehat{AMB}=\widehat{AMC}=90^0\Rightarrow AM\perp BC\)

Do đó áp dụng định lý Pitago:
\(AB^2=AM^2+BM^2\)

\(\Leftrightarrow AB^2=AM^2+(\frac{BC}{2})^2\)

\(\Leftrightarrow 13^2=AM^2+5^2\Rightarrow AM=12\) (cm)

Theo tính chất đường trung tuyến thì \(AG=\frac{2}{3}AM=\frac{2}{3}.12=8\) (cm)

Bình luận (0)
TN
4 tháng 5 2018 lúc 19:51

Fan vuơng túân khải à 😒😁

Bình luận (0)

Các câu hỏi tương tự
PY
Xem chi tiết
LD
Xem chi tiết
PK
Xem chi tiết
PH
Xem chi tiết
PH
Xem chi tiết
MN
Xem chi tiết
DH
Xem chi tiết
LT
Xem chi tiết
AH
Xem chi tiết