Cho \(\Delta ABC\), M là điểm tùy ý trong \(\Delta ABC\), các đường AM, BM, CM lần lượt cắt BC, CA, AB tại A', B', C'.
CMR: \(\frac{MA'}{AA'}+\frac{MB'}{BB'}+\frac{MC'}{CC'}=1\)
Cmr trong mọi tam giác ABC
a) \(\frac{\cos\frac{A}{2}}{l_A}\) + \(\frac{\cos\frac{B}{2}}{l_B}\) + \(\frac{\cos\frac{C}{2}}{l_C}\) = \(\frac{1}{a}\) + \(\frac{1}{b}\) + \(\frac{1}{c}\)
b) 1+ \(\frac{r}{R}\) = cosA + cosB + cosC
cho tam giác ABC. CMR
\(\cos\frac{a}{2}=\sqrt{\frac{p\left(p-a\right)}{bc}}\)
Cho tam giác ABC có BC = a, AC = b, AB = c, đường phân giác trong ứng với góc A là la. Chứng minh: \(l_a=\dfrac{2bc.\cos\dfrac{A}{2}}{b+c}\)
Cmr trong mọi tam giác ABC
a) a = b.\(\cos C\) + c.\(\cos B\)
b) a = r(\(\cot\frac{B}{2}\) + \(\cot\frac{C}{2}\))
c) ra = p.\(\tan\frac{A}{2}\)
d) r = (p - a).\(\tan\frac{A}{2}\)
Cho tam giác ABC. Đẳng thức nào sai?
A. sin(A+B-2C)= sin3C B. cos\(\frac{B+C}{2}\)= sin\(\frac{A}{2}\)
C. sin(A+B)= sinC D. cos\(\frac{A+B+2C}{2}\)= sin\(\frac{C}{2}\)
Câu 1: Cho tam giác ABC. Khẳng định nào sau đây đúng ?
A: \(h_a=R.sinB.sinC\)
B: \(h_a=4R.sinB.sinC\)
C: \(h_a=2R.sinB.sinC\)
D: \(h_a=\frac{1}{4}R.sinB.sinC\)
Câu 2: Cho tam giác ABC nội tiếp (O,R). Diện tích tam giác ABC bằng ?
A: \(\frac{1}{2}R^2\left(sin2A+sin2B+sin2C\right)\)
B: \(R^2\left(sin2A+sin2B+sin2C\right)\)
C: \(\frac{1}{2}R^2\left(sinA+sinB+sinC\right)\)
D: \(R^2\left(sinA+sinB+sinC\right)\)
Câu 3: Cho tam giác ABC, M và N lần lượt thuộc 2 tia AB và AC (M, N ≠ A). Khẳng định nào sau đây đúng ?
A: \(\frac{S_{AMN}}{S_{ABC}}=3\frac{AM}{AB}.\frac{AN}{AC}\)
B: \(\frac{S_{AMN}}{S_{ABC}}=2\frac{AM}{AB}.\frac{AN}{AC}\)
C: \(\frac{S_{AMN}}{S_{ABC}}=\frac{1}{2}\frac{AM}{AB}\frac{AN}{AC}\)
D: \(\frac{S_{AMN}}{S_{ABC}}=\frac{AM}{AB}\frac{AN}{AC}\)
Câu 4: Cho tam giác ABC có a=BC, b=AC, c=AB. Khẳng định nào sau đây là đúng ?
A: a =b.cosB+c.cosC
B: a =b.cosC+b.cosB
C: a =b.sinB+c.sinC
D: a=b.sinC+c.sinB
Cho \(\Delta ABC\) có 3 đường trung tuyến \(m_a,m_b,m_c\). Chứng minh: \(a^2=S_{\Delta ABC}.\cot\widehat{A}\) biết \(m_a^2=m^2_b+m^2_c\)
cho \(\dfrac{\sin A}{\sin B.\cos C}=2\). Chứng minh rằng: tam giác ABC cân