Gọi O là trọng tâm của tam giác. Ta có:
OA + OB > AB
OA + OC > AC
OB + OC > BC
=> 2(OA + OB + OC) > AB + BC + CA
\(\Rightarrow2\cdot\left(\dfrac{2}{3}AM+\dfrac{2}{3}BN+\dfrac{2}{3}CP\right)>AB+BC+CA\)
\(\Rightarrow\dfrac{4}{3}\left(AM+BN+CP\right)>AB+BC+CA\)
\(\Rightarrow AM+BN+CP>\dfrac{3}{4}\left(AB+BC+CA\right)\)
Ta có:
Nếu góc AMB tù hoặc vuông thì AB > AM
Nếu góc AMC tù hoặc vuông thì AC > AM
Tương tự: BC > BN hoặc BA > BN
CA > CP hoặc CB > CP
Vậy các cạnh của tam giác ABC luôn lớn hơn 2 trong 3 trung tuyến
=> AB + BC + CA > AM + BN + CP
Vậy...........................................