Lời giải:
Theo BĐT về tam giác: độ dài một cạnh tam giác thì nhỏ hơn tổng độ dài 2 cạnh còn lại:
\(\Rightarrow \left\{\begin{matrix} AM< MP+AP\\ AM< MN+AN\end{matrix}\right.\Rightarrow 2AM< MP+MN+AP+AN\)
Dễ nhận thấy $MN,MP$ là các đường trung bình của tam giác $ABC$
\(\Rightarrow MN=\frac{1}{2}AB; MP=\frac{1}{2}AC\)
Lại có: \(AP=\frac{1}{2}AB; AN=\frac{1}{2}AC\)
Do đó: \(2AM< \frac{1}{2}AC+\frac{1}{2}AB+\frac{1}{2}AB+\frac{1}{2}AC=AB+AC\)
\(\Rightarrow AM< \frac{AB+AC}{2}\)
Hoàn toàn TT với \(BN, CP\) suy ra:
\(AM+BN+CP< \frac{AB+AC}{2}+\frac{BC+BA}{2}+\frac{CA+CB}{2}=AB+BC+AC\)
Ta có đpcm
Đúng 0
Bình luận (0)