Cho tam giác ABC, M thuộc BC, N thuộc AC sao cho BM/MC=2/3 ; CN/NA=3/5 , AM cắt BN tại O.
a) Tính tỉ số AO/AM
b) Lấy điểm P trên AB sao cho PB/BA=2/7 . Chứng minh: AM, BN, CP đồng quy
Cho tam giác ABC, M là 1 điểm nằm trên cạnh BC thỏa mãn: \(BM=\dfrac{1}{3}BC\); lấy I thuộc đoạn AM sao cho \(AI=\dfrac{1}{3}AM\). Tia BI cắt cạnh AC tại D. Tính tỉ số \(\dfrac{AD}{AC}\)
Cho tam giác ABC, M thuộc AC sao cho AM=MC=1/3. Lấy điểm O trên BM sao cho OM/OB=2/3. Nối A với O cắt BC tại N.
a) Tính các tỉ số CN/NB và AO/ON.
b) Xác định vị trí của điểm P trên AB sao cho BM, AN, CP đồng quy
Cho tam giác ABC và 3 đường phân giác AM, BN, CP cắt nhau tại I. CM:
a) \(\dfrac{MB}{MC}.\dfrac{NC}{NA}.\dfrac{PA}{PB}=1\)
b) \(\dfrac{MI}{MA}+\dfrac{NI}{NB}+\dfrac{PI}{PC}=1\)
Cho tam giác ABC, M thuộc AC sao cho AM=MC=1/3. Lấy điểm O trên BM sao cho OM/OB=2/3. Nối A với O cắt BC tại N.
a) Tính các tỉ số CN/NB và AO/ON.
b) Xác định vị trí của điểm P trên AB sao cho BM, AN, CP đồng quy
Cho tam giác ABC, 3 đường phân giác AM, BN, CP cắt nhau tại O. 3 cạnh AB, BC, CA tỉ lệ với 4,7,5
a) Tính MC, biết BC = 18cm.
b) Tính AC, biết NC - NA = 3cm
c) Tính tỉ số \(\dfrac{OP}{OC}\)
d) CM: \(\dfrac{MB}{MC}\).\(\dfrac{NC}{NA}\).\(\dfrac{PA}{PB}\)=1 và \(\dfrac{1}{AM}\)+\(\dfrac{1}{BN}\)+\(\dfrac{1}{CP}\)> \(\dfrac{1}{BC}\)+\(\dfrac{1}{CA}\)+\(\dfrac{1}{AB}\)
Cho \(\Delta ABC\) , trên BC lấy điểm M sao cho \(\dfrac{MC}{MB}=\dfrac{1}{2}\) , trên AC lấy điểm N sao cho \(\dfrac{NC}{NA}=\dfrac{1}{2}\) . Gọi G là giao điểm của AM và BN. C/minh:
a, MN // AB
b, \(\dfrac{GM}{GA}=\dfrac{GN}{GB}=\dfrac{1}{3}\)
Câu 3:Cho Δ ABC và O là một điểm bất kì thuộc miền trong tam giác đó.Các đường thẳng AO;BO;CO cắt BC;AC;AB lần lượt tại M;N;P.
a)CMR: \(\dfrac{OM}{AM}+\dfrac{ON}{BN}+\dfrac{OP}{CP}\) không phụ thuộc vào vị trí điểm O.
b)CMR: Trong ba tỉ số \(\dfrac{OA}{OM};\dfrac{OB}{ON};\dfrac{OC}{OP}\) có ít nhất một tỉ số không nhỏ hơn 2 và có ít nhất một tỉ số không lớn hơn 2.
Cho tam giacs ABC cos S = 27cm^2. Lấy các điểm M, N, P lần lượt trên các cạnh AB, BC, AC sao cho \(\dfrac{AM}{BM}=\dfrac{BM}{NC}=\dfrac{CP}{PA}=\dfrac{1}{2}\). Khi đó diện tích tam giac ABC là