a: ΔDEF cân tại D
mà DH là đường cao
nên H là trung điểm của EF và DH là phân giác của góc EDF
=>góc EDH=góc FDH
b: EH=FH=8/2=4cm
=>DH=3cm
c: Xét ΔDKH vuông tại K và ΔDGH vuông tại G có
DH chung
góc KDH=góc GDH
=>ΔDKH=ΔDGH
=>HK=HG
=>ΔHKG cân tại H
a: ΔDEF cân tại D
mà DH là đường cao
nên H là trung điểm của EF và DH là phân giác của góc EDF
=>góc EDH=góc FDH
b: EH=FH=8/2=4cm
=>DH=3cm
c: Xét ΔDKH vuông tại K và ΔDGH vuông tại G có
DH chung
góc KDH=góc GDH
=>ΔDKH=ΔDGH
=>HK=HG
=>ΔHKG cân tại H
Cho Tam giác DEF có DE = DF. Gọi A là trung điểm của EF.
a. Chứng minh: Tam giác DEA = Tam giác DFA
b. Trên cạnh DE và DF lần lượt lấy hai điểm B và C sao cho DB = DC. Chứng minh: Tam giác
DBA = Tam giác DCA.
Cho tam giác DEF có 3 góc nhọn. Kẻ DH vuông EF H thuộc EF. Biết DF = 20cm DH=12 và EF = 5cm. Tính chu vi của tam giác DEF
Cho tam giác nhọn DEF có DE<DF, tia phân giác của góc DEF cắt DF tại I. Lấy K trên EF sao cho ED=EK.
a) Chứng minh tam giác DEI = tam giác KEI.
b) Gọi H là giao điểm của ED và KI. Chứng minh DH=KF.
(Có hình nữa càng tốt nha các bạn)
Cho tam giác nhọn DEF có DE<DF, tia phân giác của góc DEF cắt DF tại I. Lấy K trên EF sao cho ED=EK.
a) Chứng minh tam giác DEI = tam giác KEI.
b) Gọi H là giao điểm của ED và KI. Chứng minh DH=KF.
(Có hình nữa càng tốt nha các bạn. Thank you very much!)
Bài 3: Cho góc xOy, phân giác Om. Trên Om lấy điểm D. Hạ DE, DF vuông góc với Ox, Oya) Chứng Minh: OE=OFb) Chứng Minh OD là trung trực của EF.
Cho tam giác ABC có góc A = 90°, tia phân giác BM (M thuộc AC), kẻ MD vuông góc với BC tại D
a) Chứng minh góc BMA = góc BMD b) Gọi E là giáo điểm của hai đường thẳng MD các BA chứng minh AC = DE c) Chứng minh ∆AME = ∆DMC d) Kẻ DH vuông góc với MC tại H, AK vuông góc với ME tại K. Hai tia DH và AK cắt nhau tại N. Chứng minh MN là tia phân giác của góc KMN e) Chứng minh B,M,N thẳng hàng f) Chứng minh BN vuông góc với AD, BN vuông góc với EC g) Tâm giác ABC cần thoả mãn điều kiênn gì để tam giác NAD đều
Cho tam giác ABCvuông tại A. Tia phân giác của góc B cắt cạnh AC tại E, trên cạnh BC lấy điểm F sao cho BF = BA.Câu 1:Chứng minh ABEFBE .Câu 2:Chứng minh EF vuông góc với BC.Câu 3:Từ điểm A kẻ AH vuông góc BC ( H thuộc BC). Chứng minh AH // EF.
Em cần gấp ,1 bài thôi cũng được ạ
Bài 1: Cho ∆MNP có MN =8cm, MP = 15cm, NP = 17cm.
a) Chứng minh ∆MNP vuông
b) Kẻ tia phân giác NI của góc MNP (I MP). Từ I kẻ IK vuông góc với NP.
Chứng minh ∆MNI = ∆KI
c) Tia IK cắt tia NM tại Q. Chứng minh KP = MQ
d) Từ M kẻ tia Mx//IK cắt NI ở H. Chứng minh ∆MIH cân
Bài 2: Cho ∆ABC cân tại A có AB = AC = 5cm, BC= 6cm. Kẻ AD vuông góc với
BC tại D. Kẻ DE vuông góc với AB tại E, DF vuông góc với AC tại F.
a) Chứng minh ∆ADB = ∆ADC
b) Tính độ dài AC
c) Giả sử ̂ = 740
. Tính góc ABC
d) Chững minh DE = DF
e) Chứng minh AE = AF
f) Chứng minh DE //BC
Bài 3: Cho ∆MNP có MN = MP = 13cm, NP = 10cm. Kẻ MD vuông góc với NP
tại D.
a) Chứng minh: ND = PD và ̂ ̂
b) Tính độ dài MD
c) Kẻ DA vuông góc MN tại I và IA = ID; kẻ DB vuông góc MP tại H và DH =
BH. Chứng minh rằng AM = MD
d) Chứng minh ∆MAB cân
e) Chứng minh AN vuông góc AM
f) Gọi giao điểm của AB và MN là E, giao điểm của AB và MP là F. Chứng
minh DM là tia phân giác của góc EDF
Bài 4: Cho ∆ABC vuông tại A có AB = 3cm, AC = 4cm.
a) Tính độ dài BC
b) Trên tia đối của tia AC lấy điểm D sao cho AD = AB. ∆ABD có dạng đặc
biệt gì? Vì sao?
c) Lấy trên tia đối của tia AB điểm E sao cho AE = AC .chứng minh DE = BC
Bài 5: cho ∆ABC cân tại A, có góc C= 300
. Vẽ phân giác AD ( D BC). Vẽ DE
vuông góc với AB, DF vuông góc AC.
a) Chứng minh ∆DEF đều
b) Chứng minh ∆BED = ∆CFD
c) Kẻ BM//AD ( M AC) chứng minh ∆ABM đều
Cho tâm giác ABC vuông tại B, tia phân giác của góc A cắt BC tại D . Kẻ DE vuông góc với AC ( E thuộc AC )
a) Chứng minh tam giác ABD = tam giác AED
b) Biết số đo góc C = 30 độ . Chứng minh DE là đường trung trực của đoạn thẳng AC
Mọi người giúp mik nha mai thi rồi 🤗🤗🤗