Ôn tập chương I : Tứ giác

LQ

Cho ΔABC vuông tại A, đường cao AH. Gọi M là trung điểm của BC. Vẽ MD ⊥ AB tại D, ME ⊥ AC tại E.

a, CMR: ADME là hình chữ nhật

b, CMR: CMDE là hình bình hành

c, Qua A vẽ đường thẳng song song với DH cắt DE tại K, đường thẳng HK cắt AC tại N. CMR: NH2 = NA. NC

P/S: Chỉ cần giải câu c cho mình thôi nha :3

NT
11 tháng 1 2021 lúc 22:36

a) Xét tứ giác ADME có 

\(\widehat{EAD}=90^0\)(\(\widehat{BAC}=90^0\), E∈AC, D∈AB)

\(\widehat{AEM}=90^0\)(ME⊥AC)

\(\widehat{ADM}=90^0\)(MD⊥AB)

Do đó: ADME là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Ta có: MD⊥AB(gt)

AC⊥AB(ΔABC vuông tại A)

Do đó: MD//AC(Định lí 2 từ vuông góc tới song song)

Xét ΔABC có 

M là trung điểm của BC(gt)

MD//AC(cmt)

Do đó: D là trung điểm của AB(Định lí 1 đường trung bình của tam giác)

Xét ΔABC có 

D là trung điểm của AB(cmt)

M là trung điểm của BC(cmt)

Do đó: DM là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

hay \(DM=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)

Ta có: ME⊥AC(gt)

AB⊥AC(ΔABC vuông tại A)

Do đó: ME//AB(Định lí 1 từ vuông góc tới song song)

Xét ΔABC có 

M là trung điểm của BC(gt)

ME//AB(cmt)

Do đó: E là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)

nên \(CE=\dfrac{AC}{2}\)(2)

Từ (1) và (2) suy ra CE=MD

Xét tứ giác CMDE có 

CE//MD(MD//AC, E∈AC)

CE=MD(cmt)

Do đó: CMDE là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Bình luận (1)

Các câu hỏi tương tự
HL
Xem chi tiết
HL
Xem chi tiết
DH
Xem chi tiết
DA
Xem chi tiết
LH
Xem chi tiết
NA
Xem chi tiết
TT
Xem chi tiết
FU
Xem chi tiết
DN
Xem chi tiết