NC

Cho ΔABC nhọn, các đường cao BD,CE cắt nhau tại H. đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau tại K

a, cm BHCK là hbh

b, gọi M là trung điểm của BC. CM H,M,K thẳng hàng

NT
16 tháng 12 2023 lúc 0:12

a: ta có: BH\(\perp\)AC

CK\(\perp\)AC

Do đó: BH//CK

Ta có: CH\(\perp\)AB

BK\(\perp\)BA

Do đó: CH//BK

Xét tứ giác BHCK có

BH//CK

BK//CH

Do đó: BHCK là hình bình hành

b: Ta có: BHCKlà hình bình hành

=>BC cắt HK tại trung điểm của mỗi đường

mà M là trung điểm của BC

nên M là trung điểm của HK

=>H,M,K thẳng hàng

Bình luận (0)
NQ
14 tháng 12 2023 lúc 21:01

a, Ta có:

- BH là đường cao của tam giác ABC, nên BH vuông góc với AC.

- CK là đường cao của tam giác ABC, nên CK vuông góc với AB.

- Vì BH và CK đều vuông góc với hai cạnh AB và AC của tam giác ABC, nên BHCK là hình bình hành.

 

b, Gọi M là trung điểm của BC. Ta cần chứng minh CM, HM và KM thẳng hàng.

- Vì M là trung điểm của BC, nên BM = MC.

- Ta có BHCK là hình bình hành, nên BH = CK.

- Vì BH và CK là đường cao của tam giác ABC, nên BH = 2HM và CK = 2KM.

- Từ đó, ta có BM = MC = HM = KM.

- Vì BM = MC và HM = KM, nên CM, HM và KM thẳng hàng.

 

Vậy, ta đã chứng minh được CM, HM và KM thẳng hàng.

Bình luận (0)

Các câu hỏi tương tự
BH
Xem chi tiết
TM
Xem chi tiết
TM
Xem chi tiết
CK
Xem chi tiết
TN
Xem chi tiết
3P
Xem chi tiết
YA
Xem chi tiết
HH
Xem chi tiết
H24
Xem chi tiết