Bài 6: Tam giác cân

NB

Cho ΔABC cân ở A. Đường thẳng song song với BC cắt các cạnh AB, AC lần lượt ở D, E. Gọi O là giao điểm của BE và CD. Chứng minh: a) Tam giác ADE cân.  b) Tam giác OBC cân. (làm cả câu A và B nhé bạn)

LL
8 tháng 2 2022 lúc 20:51

a) Xét tam giác ABC có:

\(DE//BC\Rightarrow\left\{{}\begin{matrix}\widehat{ADE}=\widehat{ABC}\\\widehat{AED}=\widehat{ACB}\end{matrix}\right.\) (đồng vị)

Mà \(\widehat{ABC}=\widehat{ACB}\)(Tam giác ABC cân tại A)

\(\Rightarrow\widehat{ADE}=\widehat{AED}\) => Tam giác ADE cân tại A

b) Xét tam giác ABE và tam giác ACD có:

\(AB=AC\)(Tam giác ABC cân tại A)

\(\widehat{BAC}\) chung

\(AD=AE\) (Tam giác ADE cân tại A)

\(\Rightarrow\Delta ABE=\Delta ACD\left(c.g.c\right)\Rightarrow\widehat{ABE}=\widehat{ACD}\)

Mà \(\widehat{ABC}=\widehat{ACB}\) (Tam giác ABC cân tại A)

\(\Rightarrow\widehat{ABC}-\widehat{ABE}=\widehat{ACB}-\widehat{ACD}\Rightarrow\widehat{OBC}=\widehat{OCB}\)

=> Tam giác OBC cân tại O

Bình luận (0)

Các câu hỏi tương tự
HH
Xem chi tiết
TK
Xem chi tiết
TT
Xem chi tiết
NH
Xem chi tiết
DV
Xem chi tiết
TT
Xem chi tiết
DL
Xem chi tiết
CA
Xem chi tiết
TL
Xem chi tiết