§1. Bất đẳng thức

PO

 Cho các số thực dương \(a;b;c\).  Chứng minh rằng :

\(\dfrac{b+c}{a}+\dfrac{c+a}{b}+\dfrac{a+b}{c}\ge4.\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)\)

P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán hỗ trợ, giúp đỡ em bài toán trong đề cương với ạ!
Em cám ơn rất nhiều ạ!

MY
7 tháng 3 2022 lúc 17:29

\(S=\dfrac{b+c}{a}+\dfrac{c+a}{b}+\dfrac{a+b}{c}\)

\(S=\dfrac{b}{a}+\dfrac{c}{a}+\dfrac{c}{b}+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{c}=a\left(\dfrac{1}{b}+\dfrac{1}{c}\right)+b\left(\dfrac{1}{a}+\dfrac{1}{c}\right)+c\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge a.\dfrac{4}{b+c}+b.\dfrac{4}{a+c}+c.\dfrac{4}{a+b}=4\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)\)

Bình luận (1)

Các câu hỏi tương tự
PO
Xem chi tiết
PO
Xem chi tiết
PO
Xem chi tiết
PO
Xem chi tiết
PO
Xem chi tiết
PO
Xem chi tiết
PO
Xem chi tiết
PO
Xem chi tiết
PO
Xem chi tiết