Bài 4: Hàm số mũ. Hàm số logarit

TC

cho các số thực dương a, b, x, y thỏa mãn a>1, b>1 và \(a^{x^2}=b^{y^2}=\left(ab\right)^2\). Giá trị nhỏ nhất của biểu thức P=8x+y là \(m+n\sqrt{p},m,n,p\in N,p\le15\), giá trị của m+n+p thuộc khoảng:

A. (7;9) B. [10;13) C. [18;21) D. [14;16)

NL
8 tháng 8 2020 lúc 11:11

\(\left\{{}\begin{matrix}x^2=2log_a\left(ab\right)=2\left(1+log_ab\right)\\y^2=2log_b\left(ab\right)=2\left(1+log_ba\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2log_ab=x^2-2\\2log_ba=y^2-2\end{matrix}\right.\) \(\Rightarrow\left(x^2-2\right)\left(y^2-2\right)=4\)

\(\Leftrightarrow y^2-2=\frac{4}{x^2-2}\Rightarrow y^2=\frac{2x^2}{x^2-2}\) (\(x\ge\sqrt{2}\))

\(\Rightarrow P=f\left(x\right)=8x+\frac{x\sqrt{2}}{\sqrt{x^2-2}}=0\)

\(\Rightarrow f'\left(x\right)=8-\frac{2\sqrt{2}x}{\left(x^2-2\right)^2\sqrt{\frac{x^2}{x^2-2}}}=0\)

\(\Leftrightarrow\left(x^2-2\right)^3=\frac{1}{8}\Leftrightarrow x^2-2=\frac{1}{2}\Rightarrow x=\frac{\sqrt{10}}{2}\)

\(\Rightarrow P_{min}=P\left(\frac{\sqrt{10}}{2}\right)=5\sqrt{10}\Rightarrow\left\{{}\begin{matrix}m=0\\n=5\\m=10\end{matrix}\right.\) \(\Rightarrow m+n+p=15\)

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
NH
Xem chi tiết
ND
Xem chi tiết
HT
Xem chi tiết
MA
Xem chi tiết
TT
Xem chi tiết
NT
Xem chi tiết
PH
Xem chi tiết
MN
Xem chi tiết