Ôn tập chương 1: Căn bậc hai. Căn bậc ba

VC

cho các số dương a,b,c thỏa mãn abc=1. chứng minh rằng

\(\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{b^3}{\left(1+c\right)\left(1+a\right)}+\dfrac{c^3}{\left(1+a\right)\left(1+c\right)}\ge\dfrac{3}{4}\)

LF
25 tháng 9 2017 lúc 21:09

Áp dụng BĐT AM-GM ta có:

\(\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{b+1}{8}+\dfrac{c+1}{8}\)

\(\ge3\sqrt[3]{\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}\cdot\dfrac{b+1}{8}\cdot\dfrac{c+1}{8}}=\dfrac{3a}{4}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\dfrac{b^3}{\left(1+c\right)\left(1+a\right)}+\dfrac{c+1}{8}+\dfrac{a+1}{8}\ge\dfrac{3b}{4};\dfrac{c^3}{\left(1+a\right)\left(1+b\right)}+\dfrac{a+1}{8}+\dfrac{b+1}{8}\ge\dfrac{3c}{4}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT+\dfrac{2\left(a+b+c+3\right)}{8}\ge\dfrac{3\left(a+b+c\right)}{4}\)

\(\Leftrightarrow VT+\dfrac{2\left(3\sqrt[3]{abc}+3\right)}{8}\ge\dfrac{3\cdot3\sqrt[3]{abc}}{4}\Leftrightarrow VT\ge\dfrac{3}{4}=VP\)

Khi \(a=b=c=1\)

Bình luận (3)
NM
25 tháng 9 2017 lúc 20:51

khó

Bình luận (0)

Các câu hỏi tương tự
VC
Xem chi tiết
AL
Xem chi tiết
KM
Xem chi tiết
VC
Xem chi tiết
NM
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
QL
Xem chi tiết
TD
Xem chi tiết