Ôn tập chương 1: Căn bậc hai. Căn bậc ba

H24

Cho các số a,b,c>0 và thỏa mãn a+b+c=3. Tìm GTNN

a, \(P=\dfrac{a}{1+b^2}+\dfrac{b}{1+c^2}+\dfrac{c}{1+a^2}\)

b, \(P=\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}+\dfrac{1}{c^2+1}\)

c, \(P=\dfrac{a+1}{b^2+1}+\dfrac{b+1}{c^2+1}+\dfrac{c+1}{a^2+1}\)

H24
1 tháng 4 2021 lúc 20:32

Với cả 3 phần thì dấu "=" xảy ra tại a=b=c=1.

a) \(\dfrac{a}{1+b^2}=\dfrac{a\left(1+b^2\right)}{1+b^2}-\dfrac{ab^2}{1+b^2}=a-\dfrac{ab^2}{1+b^2}\)

(Cosi) \(\ge a-\dfrac{ab^2}{2b}=a-\dfrac{ab}{2}\)

Tương tự : \(\dfrac{b}{1+c^2}\ge b-\dfrac{bc}{2};\dfrac{c}{1+a^2}\ge c-\dfrac{ca}{2}\)

\(\Rightarrow P\ge\left(a+b+c\right)-\dfrac{ab+bc+ca}{2}\ge\left(CS\right)\left(a+b+c\right)-\dfrac{\left(a+b+c\right)^2}{6}=3-\dfrac{3^2}{6}=\dfrac{3}{2}\)

b) \(\dfrac{1}{a^2+1}=1-\dfrac{a^2}{a^2+1}\ge\left(CS\right)1-\dfrac{a^2}{2a}=1-\dfrac{a}{2}\)

Tương tự : \(\dfrac{1}{b^2+1}\ge1-\dfrac{b}{2};\dfrac{1}{c^2+1}\ge1-\dfrac{c}{2}\)

\(\Rightarrow P\ge3-\dfrac{a+b+c}{2}=3-\dfrac{3}{2}=\dfrac{3}{2}\)

c)\(P=\dfrac{a+1}{b^2+1}+\dfrac{b+1}{c^2+1}+\dfrac{c+1}{a^2+1}=\left(\dfrac{a}{b^2+1}+\dfrac{b}{c^2+1}+\dfrac{c}{a^2+1}\right)+\left(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}+\dfrac{1}{c^2+1}\right)\ge\dfrac{3}{2}+\dfrac{3}{2}=3\)

Bình luận (0)

Các câu hỏi tương tự
NM
Xem chi tiết
AL
Xem chi tiết
QL
Xem chi tiết
VC
Xem chi tiết
NM
Xem chi tiết
VC
Xem chi tiết
NM
Xem chi tiết
H24
Xem chi tiết
NM
Xem chi tiết