ĐKXĐ: \(x>0;x\ne4;9\)
\(P=\left(\frac{4\sqrt{x}\left(2-\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}+\frac{8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\frac{2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)
\(=\left(\frac{8\sqrt{x}-4x+8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\left(\frac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)
\(=\frac{4\sqrt{x}\left(\sqrt{x}+2\right)}{\left(2-\sqrt{x}\right)\left(\sqrt{x}+2\right)}.\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(3-\sqrt{x}\right)}=\frac{4x}{\sqrt{x}-3}\)
\(P>1\Rightarrow\frac{4x}{\sqrt{x}-3}>1\Rightarrow\frac{4x}{\sqrt{x}-3}-1>0\)
\(\Rightarrow\frac{4x-\sqrt{x}+3}{\sqrt{x}-3}>0\Rightarrow\sqrt{x}-3>0\Rightarrow x>9\)