ĐK: \(x\ge0\)
a.\(P=\dfrac{x-6-\sqrt{x}-3+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}.\dfrac{x+1}{2\left(\sqrt{x}-3\right)}\)
=\(\dfrac{\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+3\right)}.\dfrac{x+1}{2}\)
\(=\dfrac{x+1}{2\sqrt{x}}\)=\(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{2x}\)
b. Để P=1 thì \(\dfrac{x+1}{2\sqrt{x}}=1\)
\(\Rightarrow\left(\sqrt{x}-1\right)^2=0\)
\(\Leftrightarrow x=1\left(TM\right)\)
Vậy với x=1 thì P=1