Ôn tập hệ hai phương trình bậc nhất hai ẩn

NT

Cho biểu thức :

A= \(\left(\dfrac{\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\left(\dfrac{x^2-2x+1}{2}\right)\)

a) Xác định x để A tồn tại .

b) Rút gọn .

c) Tìm x thuộc Z để A nhận giá trị nguyên .

d) Tìm x để A nhận giá trị âm .

NA
20 tháng 7 2018 lúc 16:00

a) A xác định khi\(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\sqrt{x}\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\) b) Rút gọn: \(A=\left(\dfrac{\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\left(\dfrac{x^2-2x+1}{2}\right)=\left[\dfrac{\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right].\dfrac{\left(x-1\right)^2}{2}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)^2+\left(-\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\dfrac{\left(x-1\right)^2}{2}=\dfrac{x\sqrt{x}+2x+\sqrt{x}-2x-4\sqrt{x}-2-x+\sqrt{x}-2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}.\dfrac{\left(x-1\right)\left(x-1\right)}{2}=\dfrac{x\sqrt{x}-x-4\sqrt{x}}{\left(x-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\left(x-1\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{2}=\dfrac{\left(x\sqrt{x}-x-4\sqrt{x}\right)\left(\sqrt{x}-1\right)}{2}=\dfrac{x^2-x\sqrt{x}-x\sqrt{x}+x-4x+4\sqrt{x}}{2}=\dfrac{x^2-3x-2x\sqrt{x}+4\sqrt{x}}{2}\)chắc sai r nha bạn

Bình luận (2)

Các câu hỏi tương tự
AN
Xem chi tiết
DD
Xem chi tiết
NT
Xem chi tiết
DD
Xem chi tiết
DD
Xem chi tiết
DD
Xem chi tiết
DD
Xem chi tiết
NL
Xem chi tiết
NT
Xem chi tiết