Bài 1: Căn bậc hai

TS

Cho biểu thức: P\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{4\sqrt{x}-3}{2\sqrt{x}-x}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}}-\dfrac{\sqrt{x}-4}{\sqrt{x}-2}\right)\)

a) Rút gọn P

b) Tính GTNN của \(\sqrt{P}\)

NY
13 tháng 5 2018 lúc 18:47

a)

\(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{4\sqrt{x}-3}{2\sqrt{x}-x}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}}-\dfrac{\sqrt{x}-4}{\sqrt{x}-2}\right)\)

\(\Leftrightarrow P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{4\sqrt{x}-3}{\sqrt{x}\left(2-\sqrt{x}\right)}\right):\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)-\sqrt{x}\left(\sqrt{x}-4\right)}{\sqrt{x}.\left(\sqrt{x}-2\right)}\)

\(\Leftrightarrow P=\dfrac{\sqrt{x}.\sqrt{x}-\left(4\sqrt{x}-3\right)}{\sqrt{x}.\left(\sqrt{x}-2\right)}.\dfrac{\sqrt{x}.\left(\sqrt{x}-2\right)}{x-4-x+4\sqrt{x}}\)

\(\Leftrightarrow P=\dfrac{x-4\sqrt{x}+3}{4\sqrt{x}-4}\)

\(\Leftrightarrow P=\dfrac{x-3\sqrt{x}-\sqrt{x}+3}{4\left(\sqrt{x}-1\right)}\)

\(\Leftrightarrow P=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)-\left(\sqrt{x}-3\right)}{4\left(\sqrt{x}-1\right)}\)

\(\Leftrightarrow P=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}{4\left(\sqrt{x}-1\right)}\)

\(\Leftrightarrow P=\dfrac{\sqrt{x}-3}{4}\)

Bình luận (0)
NY
13 tháng 5 2018 lúc 20:09

b) Ta có :

\(\sqrt{P}=\sqrt{\dfrac{\sqrt{x}-3}{4}}=\dfrac{\sqrt{\sqrt{x}-3}}{2}\)

vì: \(\sqrt{\sqrt{x}-3}\ge0\)

\(\Leftrightarrow\dfrac{\sqrt{\sqrt{x}-3}}{2}\ge0\)

\(\Leftrightarrow\sqrt{P}\ge0\)

dấu bằng xảy ra \(\Leftrightarrow\sqrt{\sqrt{x}-3}=0\Leftrightarrow\sqrt{x}-3=0\Leftrightarrow\sqrt{x}=3\Leftrightarrow x=9\left(TMĐK\right)\)

Vậy \(min\sqrt{P}=0khix=9\)

Bình luận (0)

Các câu hỏi tương tự
MS
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
ND
Xem chi tiết
LN
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
PL
Xem chi tiết
HN
Xem chi tiết