Ôn tập chương Hình trụ, Hình nón, Hình cầu

ND

Cho biểu thức: \(P=\left(1+\dfrac{\sqrt{x}}{x+1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right)-1\)

a, Tìm điều kiện của x để biểu thức P có nghĩa và rút gọn biểu thức P

b, Tìm các giá trị nguyên của x để biểu thức \(Q=P-\sqrt{x}\) nhận giá trị nguyên

NT
24 tháng 4 2017 lúc 19:39

a/ ĐKXĐ: \(x\ge0;x\ne1\)

= \(\dfrac{x+1+\sqrt{x}}{x+1}:\left[\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right]-1\)

= \(\dfrac{x+1+\sqrt{x}}{x+1}:\dfrac{x+1-2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}-1\)

= \(\dfrac{x+1+\sqrt{x}}{x+1}:\dfrac{\left(\sqrt{x}-1\right)^2}{\left(x+1\right)\left(\sqrt{x}-1\right)}-1\)

\(=\dfrac{\left(x+1+\sqrt{x}\right)\left(x+1\right)\left(\sqrt{x}-1\right)}{\left(x+1\right)\left(\sqrt{x}-1\right)^2}-1\)

= \(\dfrac{x+1+\sqrt{x}}{\sqrt{x}-1}-1=\dfrac{x+2}{\sqrt{x}-1}\)

b/ Ta có:

\(Q=P-\sqrt{x}\)

= \(\dfrac{x+2}{\sqrt{x}-1}-\sqrt{x}\)

= \(\dfrac{\sqrt{x}+2}{\sqrt{x}-1}=\dfrac{\left(\sqrt{x}-1\right)+3}{\sqrt{x}-1}=1+\dfrac{3}{\sqrt{x}-1}\)

Để Q nhận giá trị nguyên thì \(1+\dfrac{3}{\sqrt{x}-1}\in Z\)

\(\Leftrightarrow\dfrac{3}{\sqrt{x}-1}\in Z\) ( vì 1\(\in Z\) )

\(\Leftrightarrow\sqrt{x}-1\inƯ_{\left(3\right)}\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-1=3\\\sqrt{x}-1=-3\\\sqrt{x}-1=1\\\sqrt{x}-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=4\\\sqrt{x}=-2\\\sqrt{x}=2\\\sqrt{x}=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=16\left(tm\right)\\\\x=4\left(tm\right)\\x=0\left(tm\right)\end{matrix}\right.\)

Vậy để biểu thức \(Q=P-\sqrt{x}\) nhận giá trị nguyên thì x=\(\left\{16;4;0\right\}\)

Bình luận (0)

Các câu hỏi tương tự
NL
Xem chi tiết
HA
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết
HV
Xem chi tiết
NH
Xem chi tiết
NM
Xem chi tiết
TT
Xem chi tiết
NT
Xem chi tiết