Ôn tập chương 1: Căn bậc hai. Căn bậc ba

TT

Cho biểu thức

\(P=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\)

1) rút gọn P

2) tính giá trị của P biết x = \(28-6\sqrt{3}\)

3) chứng minh P < \(\frac{1}{3}\)

4) tìm x để P = \(\frac{2}{7}\)

5) tìm giá trị lớn nhất của P

Các bạn giải gấp cho mk bài này nha . Mk đang cần rất gấp bạn nào giải đúng mk tick cho

TP
2 tháng 8 2019 lúc 20:33

1) Để ý rằng : \(x\sqrt{x}-1=\sqrt{x^3}-\sqrt{1^3}=\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\)

\(P=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\)

\(P=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(P=\frac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(P=\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(P=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(P=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)

2) \(x=28-6\sqrt{3}=\left(3\sqrt{3}-1\right)^2\)

\(\Rightarrow\sqrt{x}=3\sqrt{3}-1\)

Thay vào P ta được :

\(P=\frac{3\sqrt{3}-1}{28-6\sqrt{3}+3\sqrt{3}-1+1}\)

\(P=\frac{3\sqrt{3}-1}{28-3\sqrt{3}}\)

3) \(P=\frac{\sqrt{x}}{x+\sqrt{x}+1}< \frac{1}{3}\)

\(\Leftrightarrow x+\sqrt{x}+1>3\sqrt{x}\)

\(\Leftrightarrow x-2\sqrt{x}+1>0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2>0\)

BĐT cuối luôn đúng \(\forall x>1\)

Ta có đpcm

4) \(P=\frac{\sqrt{x}}{x+\sqrt{x}+1}=\frac{2}{7}\)

\(\Leftrightarrow2x+2\sqrt{x}+2=7\sqrt{x}\)

\(\Leftrightarrow2x-5\sqrt{x}+2=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(2\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\frac{1}{4}\end{matrix}\right.\)

Vậy...

5) \(P=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)

\(\Leftrightarrow Px+P\sqrt{x}+P=\sqrt{x}\)

\(\Leftrightarrow x\cdot P+\sqrt{x}\left(P-1\right)+P=0\)

Phương trình trên có nghiệm khi \(\Delta\ge0\)

\(\Leftrightarrow\left(P-1\right)^2-4P^2\ge0\)

\(\Leftrightarrow P^2-2P+1-4P^2\ge0\)

\(\Leftrightarrow-3P^2-2P+1\ge0\)

\(\Leftrightarrow-3\left(P^2+\frac{2}{3}P-\frac{1}{3}\right)\ge0\)

\(\Leftrightarrow P^2+\frac{2}{3}P-\frac{1}{3}\le0\)

\(\Leftrightarrow P^2+2\cdot P\cdot\frac{1}{3}+\frac{1}{9}-\frac{4}{9}\le0\)

\(\Leftrightarrow\left(P+\frac{1}{3}\right)^2\le\left(\frac{2}{3}\right)^2\)

\(\Leftrightarrow P+\frac{1}{3}\le\frac{2}{3}\)

\(\Leftrightarrow P\le\frac{1}{3}\)

Vậy \(maxP=\frac{1}{3}\Leftrightarrow x=1\)??

Đoạn này sai sai ta ?

Bình luận (1)

Các câu hỏi tương tự
TT
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết