Bài 8: Rút gọn biểu thức chứa căn bậc hai

MV

Cho biểu thức: \(D=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\)

a, Rút gọn D

b, Tìm a để D = 2

c, Cho a > 1 hãy so sánh D và \(|D|\)

d, Tìm D min

MP
14 tháng 8 2018 lúc 6:40

a) điều kiện xác định : \(a>0\)

ta có : \(D=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\)

\(\Leftrightarrow D=\dfrac{\left(a+\sqrt{a}\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)

\(\Leftrightarrow D=a+\sqrt{a}-2\sqrt{a}-1+1=a-\sqrt{a}\)

b) ta có : \(D=2\Leftrightarrow x-\sqrt{x}=2\Leftrightarrow x-\sqrt{x}-2=0\)

\(\Leftrightarrow\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+1=0\\\sqrt{x}-2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\in\varnothing\\x=4\end{matrix}\right.\)

vậy \(x=4\)

c) ta có : \(a>1\Leftrightarrow a-1>0\Leftrightarrow\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)>0\)

\(\Leftrightarrow\sqrt{a}-1>0\Leftrightarrow\sqrt{a}\left(\sqrt{a}-1\right)>0\Leftrightarrow a-\sqrt{a}>0\)

\(\Rightarrow\left|D\right|=\left|a-\sqrt{a}\right|=a-\sqrt{a}=D\) vậy \(D=\left|D\right|\)

d) ta có : \(D=a-\sqrt{a}\Leftrightarrow a-\sqrt{a}-D=0\)

phương trình này luôn có nghiệm \(\Rightarrow\Delta\ge0\)

\(\Leftrightarrow1^2-4\left(-D\right)=4D+1\ge0\Leftrightarrow D\ge\dfrac{-1}{4}\)

\(\Rightarrow D_{min}=\dfrac{-1}{4}\) khi \(\sqrt{a}=\dfrac{-b}{2a}=\dfrac{1}{2}\Leftrightarrow a=\dfrac{1}{4}\)

vậy \(D_{min}=\dfrac{-1}{4}\) khi \(a=\dfrac{1}{4}\)

Bình luận (0)

Các câu hỏi tương tự
NB
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
LH
Xem chi tiết
NM
Xem chi tiết
TN
Xem chi tiết
TH
Xem chi tiết
HD
Xem chi tiết
HL
Xem chi tiết