Chương I - Căn bậc hai. Căn bậc ba

QE

Cho biểu thức :

\(C=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(1+\dfrac{2}{\sqrt{x}-1}\right)\) 

a. Rút gọn C

b. Tìm x để C < -1

                                                                                                                 

 

TC
25 tháng 7 2021 lúc 8:52

a/ \(B=(\dfrac{2}{\sqrt{x}-3}+\dfrac{\sqrt{x}-6}{x-9}):(1+\dfrac{6}{x-9})\)

   =  \((\dfrac{2}{\sqrt{x}-3}+\dfrac{\sqrt{x}+6}{(\sqrt{x}-3)(\sqrt{x}+3)}):(\dfrac{x-9}{x-9}+\dfrac{6}{x-9})\)

   =\((\dfrac{2(\sqrt{x}+3)}{(\sqrt{x}-3)(\sqrt{x}+3)}+\dfrac{\sqrt{x}-6}{(\sqrt{x}-3)(\sqrt{x}+3)}):(\dfrac{x-3}{x-9})\)

   =\((\dfrac{2\sqrt{x}+6+\sqrt{x}-6}{(\sqrt{x}-3)(\sqrt{x}+3)}):(\dfrac{x-3}{x-9})\)

   =\((\dfrac{2\sqrt{x}+6+\sqrt{x}-6}{x-9}).(\dfrac{x-9}{x-3})\)

    = \(\dfrac{3\sqrt{x}}{x-3}\)

Vậy B=\(\dfrac{3\sqrt{x}}{x-3}\)

b/ Để B≥0 thì \(\dfrac{3\sqrt{x}}{x-3} \)≥0

                   \(<=>\begin{cases} x-3 không= 0\\ 3\sqrt{x}>/0 \end{cases} \)

                     <=> \(\begin{cases} x không= 3\\ x>/0 \end{cases} \)

Vậy để B≥0 thì x không = 3 và x≥0

Bình luận (0)
NT
26 tháng 7 2021 lúc 0:01

a) Ta có: \(C=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(1+\dfrac{2}{\sqrt{x}-1}\right)\)

\(=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

b) Để C<-1 thì C+1<0

\(\Leftrightarrow\dfrac{\sqrt{x}-1+\sqrt{x}}{\sqrt{x}}< 0\)

\(\Leftrightarrow2\sqrt{x}-1< 0\)

\(\Leftrightarrow x< \dfrac{1}{4}\)

Kết hợp ĐKXĐ, ta được: \(0< x< \dfrac{1}{4}\)

Bình luận (0)

Các câu hỏi tương tự
AQ
Xem chi tiết
QE
Xem chi tiết
LL
Xem chi tiết
NN
Xem chi tiết
LL
Xem chi tiết
AQ
Xem chi tiết
QE
Xem chi tiết
LG
Xem chi tiết
MS
Xem chi tiết