Chương I - Căn bậc hai. Căn bậc ba

QE

Rút gọn các biểu thức sau:
\(A=\left(\dfrac{1}{\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}\right)\left(1-\dfrac{3}{\sqrt{x}}\right)\)

\(B=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}+\dfrac{6-7\sqrt{x}}{x-4}\right)\left(\sqrt{x}+2\right)\)

\(C=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{1}}\right):\dfrac{\sqrt{a}+1}{a-1}\)

\(D=\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(E=\left(1+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1+\dfrac{x-\sqrt{x}}{1-\sqrt{x}}\right)\)

giúp mình với ạ!mình đang cần gấp

AH
17 tháng 7 2021 lúc 22:31

1. ĐKXĐ: $x>0; x\neq 9$

\(A=\frac{\sqrt{x}+3+\sqrt{x}-3}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}}=\frac{2\sqrt{x}}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}}=\frac{2}{\sqrt{x}+3}\)

Bình luận (0)
AH
17 tháng 7 2021 lúc 22:38

2. ĐKXĐ: $x\geq 0; x\neq 4$

\(B=\left[\frac{\sqrt{x}(\sqrt{x}+2)+\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)}+\frac{6-7\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}\right](\sqrt{x}+2)\)

\(=\frac{x+3\sqrt{x}-2+6-7\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}.(\sqrt{x}+2)=\frac{x-4\sqrt{x}+4}{\sqrt{x}-2}=\frac{(\sqrt{x}-2)^2}{\sqrt{x}-2}=\sqrt{x}-2\)

Bình luận (0)
AH
17 tháng 7 2021 lúc 22:40

3. ĐKXĐ: $a\geq 0; a\neq 1$

\(C=\frac{\sqrt{a}(\sqrt{a}+1)-\sqrt{a}}{(\sqrt{a}+1)(\sqrt{a}-1)}:\frac{\sqrt{a}+1}{(\sqrt{a}-1)(\sqrt{a}+1)}\)

\(\frac{a}{(\sqrt{a}-1)(\sqrt{a}+1)}:\frac{1}{\sqrt{a}-1}=\frac{a}{(\sqrt{a}-1)(\sqrt{a}+1)}.(\sqrt{a}-1)=\frac{a}{\sqrt{a}+1}\)

 

Bình luận (0)
AH
17 tháng 7 2021 lúc 22:42

4.

ĐKXĐ: $x>0; x\neq 1$

\(D=\left[\frac{x-2}{\sqrt{x}(\sqrt{x}+2)}+\frac{\sqrt{x}}{\sqrt{x}(\sqrt{x}+2)}\right].\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\frac{x+\sqrt{x}-2}{\sqrt{x}(\sqrt{x}+2)}.\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{(\sqrt{x}-1)(\sqrt{x}+2)}{\sqrt{x}(\sqrt{x}+2)}.\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}}\)

Bình luận (0)
AH
17 tháng 7 2021 lúc 22:47

5. ĐKXĐ: $x\geq 0; x\neq 1$

\(E=\left[1+\frac{\sqrt{x}(\sqrt{x}+1)}{\sqrt{x}+1}\right].\left[1+\frac{-\sqrt{x}(1-\sqrt{x})}{1-\sqrt{x}}\right]\)

\(=(1+\sqrt{x})(1-\sqrt{x})=1-x\)

Bình luận (0)
NT
18 tháng 7 2021 lúc 0:24

e) Ta có: \(E=\left(1+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1+\dfrac{x-\sqrt{1}}{1-\sqrt{x}}\right)\)

\(=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)\)

=1-x

 

Bình luận (0)
NT
18 tháng 7 2021 lúc 0:27

d) Ta có: \(D=\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right)\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\dfrac{x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\dfrac{\left(\sqrt{x}+2\right)\cdot\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

Bình luận (0)

Các câu hỏi tương tự
AQ
Xem chi tiết
QE
Xem chi tiết
QE
Xem chi tiết
QE
Xem chi tiết
QE
Xem chi tiết
H24
Xem chi tiết
NP
Xem chi tiết
HL
Xem chi tiết
MN
Xem chi tiết