Chương I - Căn bậc hai. Căn bậc ba

AQ

Cho biểu thức:

\(B=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)

với x > 0 , x ≠ 1

a. Rút gọn B

b. Tìm x để B < 0

 

NL
12 tháng 8 2021 lúc 15:53

\(B=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)

\(=\left(\dfrac{x+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)=\left(\dfrac{x+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right).\left(\sqrt{x}-1\right)\)

\(=\dfrac{x+1}{\sqrt{x}}\)

Để \(B< 0\Rightarrow\dfrac{x+1}{\sqrt{x}}< 0\)

\(\Rightarrow x+1< 0\) (vô lý do \(x>0\))

Vậy ko tồn tại x thỏa mãn yêu cầu

Bình luận (0)

Các câu hỏi tương tự
QE
Xem chi tiết
AQ
Xem chi tiết
LL
Xem chi tiết
AQ
Xem chi tiết
HL
Xem chi tiết
LL
Xem chi tiết
AQ
Xem chi tiết
QE
Xem chi tiết
AQ
Xem chi tiết