\(B=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)
\(=\left(\dfrac{x+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)=\left(\dfrac{x+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right).\left(\sqrt{x}-1\right)\)
\(=\dfrac{x+1}{\sqrt{x}}\)
Để \(B< 0\Rightarrow\dfrac{x+1}{\sqrt{x}}< 0\)
\(\Rightarrow x+1< 0\) (vô lý do \(x>0\))
Vậy ko tồn tại x thỏa mãn yêu cầu