Chương I - Căn bậc hai. Căn bậc ba

AQ

Cho biểu thức:
\(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{x}{x-1}\right):\left(\dfrac{2x}{x-1}-\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\)

a. Rút gọn A

b. Tìm x để A = 2

AT
30 tháng 7 2021 lúc 16:30

a) \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{x}{x-1}\right):\left(\dfrac{2x}{x-1}-\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\left(x\ge0,x\ne1\right)\)

\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{2x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)-x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{2x-\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\sqrt{x}}=-\dfrac{1}{\sqrt{x}-1}\)

b) \(A=2\Rightarrow\dfrac{-1}{\sqrt{x}-1}=2\Rightarrow-1=2\sqrt{x}-2\Rightarrow2\sqrt{x}=1\Rightarrow\sqrt{x}=\dfrac{1}{2}\)

\(\Rightarrow x=\dfrac{1}{4}\)

Bình luận (0)
AH
30 tháng 7 2021 lúc 16:30

Lời giải:

ĐK: $x\geq 0; x\neq 1$

a. 

\(A=\frac{\sqrt{x}(\sqrt{x}-1)-x}{(\sqrt{x}-1)(\sqrt{x}+1)}:\frac{2x-\sqrt{x}(\sqrt{x}+1)}{(\sqrt{x}-1)(\sqrt{x}+1)}\)

\(=\frac{-\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+1)}:\frac{x-\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+1)}=\frac{-\sqrt{x}}{x-\sqrt{x}}=\frac{-\sqrt{x}}{\sqrt{x}(\sqrt{x}-1)}=\frac{1}{1-\sqrt{x}}\)

b.

$A=2\Leftrightarrow 1-\sqrt{x}=\frac{1}{2}$

$\Leftrightarrow \sqrt{x}=\frac{1}{2}\Leftrightarrow x=\frac{1}{4}$ (tm)

 

Bình luận (0)
H24
30 tháng 7 2021 lúc 16:34

A=(\(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{x}{x-1}\) )\(\div\left(\dfrac{2x}{x-1}-\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\) (ĐK  \(x\ge0,x\ne1\) )

   =\(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)-x}{x-1}\div\left(\dfrac{2x-\sqrt{x}\left(\sqrt{x}+1\right)}{x-1}\right)\)

   =\(\dfrac{x-\sqrt{x}-x}{x-1}.\dfrac{x-1}{2x-x-\sqrt{x}}=\dfrac{-\sqrt{x}}{x-1}.\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

  =\(\dfrac{-1}{\sqrt{x}-1}\)

câu b

Khi x=2\(\Rightarrow A=\dfrac{-1}{\sqrt{2}-1}=\dfrac{-\left(\sqrt{2}+1\right)}{2-1}=-\left(\sqrt{2}+1\right)\)

Bình luận (1)
NT
31 tháng 7 2021 lúc 0:47

a) Ta có: \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{x}{x-1}\right):\left(\dfrac{2x}{x-1}-\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\)

\(=\dfrac{x-\sqrt{x}-x}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}:\dfrac{2x-x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{-\sqrt{x}}{x-\sqrt{x}}=\dfrac{-1}{\sqrt{x}-1}\)

b) Để A=2 thì \(\sqrt{x}-1=\dfrac{-1}{2}\)

hay \(x=\dfrac{1}{4}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
QE
Xem chi tiết
MN
Xem chi tiết
QE
Xem chi tiết
NP
Xem chi tiết
LL
Xem chi tiết
AQ
Xem chi tiết
LL
Xem chi tiết
LL
Xem chi tiết