Chương I - Căn bậc hai. Căn bậc ba

LG

Cho biểu thức \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{3\sqrt{x}+1}{x-1}\)\(x\ge0,x\ne1\)

a) Rút gọn biểu thức A.

b) Giải phương trình \(\left(\sqrt{x}+1\right).A=x\)

c) Đặt \(B=\dfrac{7A}{3\left(2\sqrt{x}-1\right)};x\ge0,x\ne1,x\ne\dfrac{1}{4}\). Tìm số hữu tỉ x để B có giá trị nguyên.

NT
18 tháng 8 2021 lúc 23:04

a: Ta có: \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{3\sqrt{x}+1}{x-1}\)

\(=\dfrac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{2x-3\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)

Bình luận (0)
NT
18 tháng 8 2021 lúc 23:11

b: Ta có: \(\left(\sqrt{x}+1\right)\cdot A=x\)

\(\Leftrightarrow\left(\sqrt{x}+1\right)\cdot\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}=x\)

\(\Leftrightarrow x-2\sqrt{x}+1=0\)

\(\Leftrightarrow x=1\left(loại\right)\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
LG
Xem chi tiết
PD
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
LA
Xem chi tiết
HL
Xem chi tiết
H24
Xem chi tiết