H24

Cho biểu thức: B = \(\dfrac{x}{x+3}\) + \(\dfrac{2x}{x-3}\) - \(\dfrac{9-3x^2}{x^2-4}\)

a) Tìm điều kiện xác định và rút gọn B

b) Tìm x để B > 0, B < 0

Giúp e với ạ

NT

a: Sửa đề: \(B=\dfrac{x}{x+3}+\dfrac{2x}{x-3}-\dfrac{9-3x^2}{x^2-9}\)

ĐKXĐ: \(x\notin\left\{3;-3\right\}\)

\(B=\dfrac{x}{x+3}+\dfrac{2x}{x-3}-\dfrac{9-3x^2}{x^2-9}\)

\(=\dfrac{x}{x+3}+\dfrac{2x}{x-3}+\dfrac{3x^2-9}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{x\left(x-3\right)+2x\left(x+3\right)+3x^2-9}{\left(x+3\right)\left(x-3\right)}\)

\(=\dfrac{x^2-3x+2x^2+6x+3x^2-9}{\left(x+3\right)\left(x-3\right)}=\dfrac{6x^2+3x-9}{\left(x+3\right)\left(x-3\right)}\)

\(=\dfrac{6x^2+9x-6x-9}{\left(x+3\right)\left(x-3\right)}\)

\(=\dfrac{\left(6x+9\right)\left(x-1\right)}{\left(x+3\right)\left(x-3\right)}\)

b:

Để B<0 thì \(\dfrac{\left(6x+9\right)\left(x-1\right)}{\left(x+3\right)\left(x-3\right)}< 0\)

TH1: \(\left\{{}\begin{matrix}\left(6x+9\right)\left(x-1\right)>0\\\left(x+3\right)\left(x-3\right)< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>1\\x< -\dfrac{3}{2}\end{matrix}\right.\\-3< x< 3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-3< x< -\dfrac{3}{2}\\1< x< 3\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}\left(6x+9\right)\left(x-1\right)< 0\\\left(x+3\right)\left(x-3\right)>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-\dfrac{3}{2}< x< 1\\\left[{}\begin{matrix}x>3\\x< -3\end{matrix}\right.\end{matrix}\right.\Leftrightarrow x\in\varnothing\)

Để B>0 thì \(\dfrac{\left(6x+9\right)\left(x-1\right)}{\left(x+3\right)\left(x-3\right)}>0\)

TH1: \(\left\{{}\begin{matrix}\left(6x+9\right)\left(x-1\right)>0\\\left(x+3\right)\left(x-3\right)>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>1\\x< -\dfrac{3}{2}\end{matrix}\right.\\\left[{}\begin{matrix}x>3\\x< -3\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>3\\x< -3\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}\left(6x+9\right)\left(x-1\right)< 0\\\left(x+3\right)\left(x-3\right)< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-\dfrac{3}{2}< x< 1\\-3< x< 3\end{matrix}\right.\Leftrightarrow-\dfrac{3}{2}< x< 1\)

 

Bình luận (0)