a,ĐK:x≠4;x>0
b,A=(\(\dfrac{1}{\sqrt{x}+2}+\dfrac{1}{\sqrt{x}-2}\))*\(\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
=\(\dfrac{x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)*\(\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
=\(\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
Để A>\(\dfrac{1}{2}\)thì\(\dfrac{\sqrt{x}-2}{\sqrt{x}}\)>\(\dfrac{1}{2}\)
⇔\(\dfrac{\sqrt{x}-4}{2\sqrt{x}}\)>0
⇔\(\sqrt{x}-4>0\left(2\sqrt{x}>0\right)\)
⇔ x>16(tm)
Để A>\(\dfrac{1}{2}\)thì 0<x>16và x≠4