Bài 6: Biến đối đơn giản biểu thức chứa căn bậc hai

NT

Cho biểu thức A=\(\left(\dfrac{1}{\sqrt{x}-3}-_{ }\dfrac{1}{\sqrt{x}+3}\right):\dfrac{3}{\sqrt{x}-3}\) Tìm điều kiện xác định,rút gọn biểu thức A

Với giá trị nào của x thì A>\(\dfrac{1}{3}\) Tìm x để A đạt giá trị lớn nhất

NT
17 tháng 9 2018 lúc 15:55

a, ĐK: \(x\ge0,x\ne9\)

b, \(A=\left(\dfrac{1}{\sqrt{x}-3}-\dfrac{1}{\sqrt{x}+3}\right):\dfrac{3}{\sqrt{x}-3}\)

\(=\dfrac{\sqrt{x}+3-\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{3}{\sqrt{x}-3}\)

\(=\dfrac{6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{3}{\sqrt{x}-3}\)

\(=\dfrac{2}{\sqrt{x}+3}\)

c, ĐK: \(x\ge0,x\ne9\)

\(A>\dfrac{1}{3}\Leftrightarrow\dfrac{2}{\sqrt{x}+3}>\dfrac{1}{3}\Leftrightarrow\sqrt{x}+3>6\Leftrightarrow\sqrt{x}>3\Leftrightarrow x>9\)

Vậy \(A>\dfrac{1}{3}\Leftrightarrow x>9\)

d, ĐK: \(x\ge0,x\ne9\)

Ta có: \(x\ge0\forall x\Leftrightarrow\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+3\ge3\)\(\Leftrightarrow\dfrac{1}{\sqrt{x}+3}\le\dfrac{1}{3}\Leftrightarrow\dfrac{2}{\sqrt{x}+3}\le\dfrac{2}{3}\)

Dấu bằng xảy ra \(\Leftrightarrow\sqrt{x}+3=3\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\left(TM\right)\)

Vậy MaxA = \(\dfrac{2}{3}\Leftrightarrow x=0\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
VL
Xem chi tiết
H24
Xem chi tiết
VL
Xem chi tiết
VL
Xem chi tiết
H24
Xem chi tiết
DD
Xem chi tiết
NN
Xem chi tiết