ĐKXĐ: \(x^2-1\ge0\Leftrightarrow\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\)
\(A=\sqrt{x^2-1+2\sqrt{x^2-1}+1}+\sqrt{x^2-1-2\sqrt{x^2-1}+1}\)
\(A=\sqrt{\left(\sqrt{x^2-1}+1\right)^2}+\sqrt{\left(\sqrt{x^2-1}-1\right)^2}\)
\(A=\sqrt{x^2-1}+1+\left|\sqrt{x^2-1}-1\right|\)
Do \(x\ge\sqrt{2}\Rightarrow\sqrt{x^2-1}-1\ge0\)
\(\Rightarrow A=\sqrt{x^2-1}+1+\sqrt{x^2-1}-1=2\sqrt{x^2-1}\)