\(3B=3^2+3^3+...+3^{101}\)
=>2B=3^101-3
=>2B+3=3^101
=>n=101
Ta có:\(B=3+3^2+3^3+...+3^{100}< =>3.B=3^2+3^3+3^4+....+3^{101}< =>3.B-B=2.B=\left(3^2+3^3+3^4+....+3^{101}\right)-\left(3+3^2+3^3+...+3^{100}\right)< =>2.B=3^{101}-3\)
Vậy 2.B+3=3101-3+3=3101 mà 2.B+3=3n<=>3n=3101<=>n=101
Vậy n=101
⇒3B=32+33+34+....+3101
⇒2B=3101-3
⇒2B+3=3101-3+3
⇒2B=3101
⇒n=101