Bài 1: Căn bậc hai

PH

Cho \(A=\left(\dfrac{2}{\sqrt{x}-2}+\dfrac{3}{2\sqrt{x}+1}-\dfrac{5\sqrt{x}7}{2x-3\sqrt{2}-2}\right):\dfrac{2\sqrt{x}+3}{5x-10\sqrt{x}}\)

a. Rut gon A voi \(x>0,x\ne4\)

b. Tim x de A nguyen

PH
16 tháng 10 2018 lúc 16:41

Cho \(5\sqrt{x}7\) mk viet nham

Sua lai thanh \(5\sqrt{x}-7\)

Bình luận (0)
NT
19 tháng 10 2022 lúc 15:51

a: \(A=\left(\dfrac{2}{\sqrt{x}-2}+\dfrac{3}{2\sqrt{x}+1}-\dfrac{5\sqrt{x}-7}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\right)\cdot\dfrac{5\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}\)

\(=\dfrac{4\sqrt{x}+2+3\sqrt{x}-6-5\sqrt{x}+7}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{5\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}\)

\(=\dfrac{2\sqrt{x}+3}{\left(2\sqrt{x}+1\right)}\cdot\dfrac{5\sqrt{x}}{2\sqrt{x}+3}=\dfrac{5\sqrt{x}}{2\sqrt{x}+1}\)

b: Để A là số nguyên thì \(5\sqrt{x}⋮2\sqrt{x}+1\)

=>10 căn x+5-5 chia hết cho 2 căn x+1

=>\(2\sqrt{x}+1\in\left\{1;5\right\}\)

hay \(x\in\varnothing\)

Bình luận (0)

Các câu hỏi tương tự
MN
Xem chi tiết
LM
Xem chi tiết
H24
Xem chi tiết
DL
Xem chi tiết
NH
Xem chi tiết
MS
Xem chi tiết
TT
Xem chi tiết
NM
Xem chi tiết
TV
Xem chi tiết