QT

Cho \(A=\dfrac{x^3-3}{x^2-2x-3}+\dfrac{6-2x}{x+1}+\dfrac{x+3}{3-x}\)

a, Tìm điều kiện xác định và rút gọn A

b, Tìm x để A = x - 2

c, Cho x > -1. Tìm giá trị nhỏ nhất của A

NT
27 tháng 8 2021 lúc 20:42

a: ĐKXĐ: \(x\notin\left\{-1;3\right\}\)

Ta có: \(A=\dfrac{x^3-3}{x^2-2x-3}+\dfrac{6-2x}{x+1}+\dfrac{x+3}{3-x}\)

\(=\dfrac{x^3-3-2\left(x-3\right)^2-\left(x+3\right)\left(x+1\right)}{\left(x-3\right)\left(x+1\right)}\)

\(=\dfrac{x^3-3-2x^2+12x-18-x^2-4x-3}{\left(x-3\right)\left(x+1\right)}\)

\(=\dfrac{x^4-3x^2+8x-24}{\left(x-3\right)\left(x+1\right)}\)

\(=\dfrac{x^2\left(x-3\right)+8\left(x-3\right)}{\left(x-3\right)\left(x+1\right)}\)

\(=\dfrac{x^2+8}{x+1}\)

b: Ta có: A=x-2

\(\Leftrightarrow x^2+8=x^2-x-2\)

\(\Leftrightarrow8+x+2=0\)

hay x=-10

Bình luận (1)

Các câu hỏi tương tự
CP
Xem chi tiết
MV
Xem chi tiết
NQ
Xem chi tiết
DV
Xem chi tiết
6C
Xem chi tiết
HL
Xem chi tiết
TL
Xem chi tiết
LL
Xem chi tiết
TL
Xem chi tiết