CP

Câu 4: Cho biểu thức: \(A=\left(\dfrac{1}{\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}\right)\left(1-\dfrac{3}{\sqrt{x}}\right)\)

a. Tìm điều kiện xác định của biểu thức A

b. Rút gọn A

c. Tìm x để giá trị biểu thức A > \(\dfrac{2}{5}\)

NM
24 tháng 11 2021 lúc 7:39

\(a,ĐK:x>0;x\ne9\\ b,A=\dfrac{\sqrt{x}+3+\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}}\\ A=\dfrac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}=\dfrac{2}{\sqrt{x}+3}\\ c,A>\dfrac{2}{5}\Leftrightarrow\dfrac{2}{\sqrt{x}+3}-\dfrac{2}{5}>0\\ \Leftrightarrow\dfrac{1}{\sqrt{x}+3}-\dfrac{1}{5}>0\\ \Leftrightarrow\dfrac{2-\sqrt{x}}{5\left(\sqrt{x}+3\right)}>0\\ \Leftrightarrow2-\sqrt{x}>0\left(\sqrt{x}+3>0\right)\\ \Leftrightarrow\sqrt{x}< 2\Leftrightarrow0< x< 4\)

Bình luận (0)

Các câu hỏi tương tự
TM
Xem chi tiết
NN
Xem chi tiết
LM
Xem chi tiết
NT
Xem chi tiết
LT
Xem chi tiết
QM
Xem chi tiết
H24
Xem chi tiết
LD
Xem chi tiết
AL
Xem chi tiết