ĐK: \(\left\{{}\begin{matrix}\sqrt{x}-3\ge0\\x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge9\\x\ge0\end{matrix}\right.\Leftrightarrow x\ge9\)
Vì \(A=\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\in[0;1)\Rightarrow A< \sqrt{A}\).
ĐK: \(\left\{{}\begin{matrix}\sqrt{x}-3\ge0\\x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge9\\x\ge0\end{matrix}\right.\Leftrightarrow x\ge9\)
Vì \(A=\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\in[0;1)\Rightarrow A< \sqrt{A}\).
Cho \(A=\dfrac{3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+3}{x-4}\) và \(B=\dfrac{x-4}{\sqrt{x}}\) \(\left(x< 0\ne4\right)\)
a, Rút gọn \(P=A.B\)
b, Tìm x để \(P=\dfrac{\sqrt{x}+7}{2}\)
c, So sánh \(P\) và \(P^2\)
Cho biểu thức \(P=\left(\dfrac{\sqrt{x}}{x\sqrt{x}-1}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\); \(x\ge0,x\ne1\).
a) Rút gọn P.
b) Tìm x để \(P=\sqrt{x}\).
c) Với x > 1, hãy so sánh P và \(\sqrt{P}\).
B= 1:(\(\dfrac{x+2}{x\sqrt{x}-1} + \dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{x-1}\))
a) Rút gọn B
b) So sánh B với 3
Cho biểu thức \(M=\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{a}-1}\right):\dfrac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)
a/ Rút gọn M với \(a>0,a\ne1\)
b/ So sánh M với 1
c/ Tính giá trị M khi \(a=3-2\sqrt{2}\)
Cho biểu thức:\(A=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x+2}{x-3\sqrt{x}+2}\)
a/ Tìm điều kiện để A có nghĩa và rút gọn A
b/ Tìm x để A>2
c/ Tìm số nguyên x sao cho A là số nguyên
cho biểu thức
A=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\) và B=\(\dfrac{\sqrt{x}}{\sqrt{x}-3}\)
a,Tính giá trị biểu thức B khi x=36
b,Tìm x để B<\(\dfrac{1}{2}\)
c,Rút gọn A
d, Tìm giá trị x nguyên nhỏ nhất để biểu thức P=A.B nguyên
cho biểu thuwcsl A= \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}-\dfrac{3-11\sqrt{x}}{x-9}\)với x≥0,x≠9
a) chứng minh A=\(\dfrac{3\sqrt{x}}{\sqrt{x}-3}\)
b) tính giá trị của A khi x=36
c) tìm x để A<\(\dfrac{1}{2}\)
Cho A=\(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
Rút gọn A
Cho biểu thức P = \(\left(\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\right):\dfrac{\sqrt{x}}{2-\sqrt{x}}\) (với x>0; x\(\ne\)0)
a,Rút gọn biểu thức P và tìm x để P = \(\dfrac{-3}{5}\)
b,Tìm GTNN của biểu thức A=P . \(\dfrac{\sqrt{x}}{\sqrt{x}+1}\)