Ôn tập chương 1: Căn bậc hai. Căn bậc ba

VC

cho a,b,c>0 và \(a^2+b^2+c^2=1\)

chứng minh rằng \(A=\sqrt{\dfrac{ab+2c^2}{1+ab-c^2}}+\sqrt{\dfrac{bc-2a^2}{1+bc-a^2}}+\sqrt{\dfrac{ca+2b^2}{1+ca-b^2}}\ge2+ab+bc+ca\)

LF
18 tháng 9 2018 lúc 22:44

\(\sqrt{\dfrac{a+b}{c+ab}}+\sqrt{\dfrac{b+c}{a+bc}}+\sqrt{\dfrac{c+a}{b+ac}}\)

Bình luận (1)
H24
30 tháng 9 2017 lúc 0:23

Bài này có xuất hiện rồi ,you vào mục tìm kiếm là thấy liền.

Lời giải vắn tắt:

\(A=\sum\sqrt{\dfrac{ab+2c^2}{1+ab-c^2}}=\sum\dfrac{ab+2c^2}{\sqrt{\left(ab+2c^2\right)\left(1+ab-c^2\right)}}\ge\sum\dfrac{2\left(ab+2c^2\right)}{1+2ab+c^2}=\sum\dfrac{2\left(ab+2c^2\right)}{\left(a+b\right)^2+2c^2}\ge\sum\dfrac{2\left(ab+2c^2\right)}{2\left(a^2+b^2\right)+2c^2}=\sum\left(ab+2c^2\right)=ab+bc+ca+2\)

( thay \(a^2+b^2+c^2=1\))

Bình luận (0)

Các câu hỏi tương tự
TO
Xem chi tiết
VC
Xem chi tiết
DM
Xem chi tiết
H24
Xem chi tiết
KM
Xem chi tiết
NC
Xem chi tiết
VC
Xem chi tiết
AP
Xem chi tiết
AL
Xem chi tiết