HM

Cho \(a,b,c>0\). Tìm min:

\(P=\dfrac{a^2}{b^2+c^2}+\dfrac{b^2}{c^2+a^2}+\dfrac{c^2}{a^2+b^2}-\dfrac{12abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\) 

NL
14 tháng 3 2022 lúc 10:56

\(P=\dfrac{a^4}{a^2b^2+a^2c^4}+\dfrac{b^4}{b^2c^2+a^2b^2}+\dfrac{c^4}{a^2+b^2}-\dfrac{12abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(P\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{2\left(a^2b^2+b^2c^2+c^2a^2\right)}-\dfrac{12abc}{2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}}\)

\(P\ge\dfrac{3\left(a^2b^2+b^2c^2+c^2a^2\right)}{2\left(a^2b^2+b^2c^2+c^2a^2\right)}-\dfrac{3}{2}=0\)

\(P_{min}=0\) khi \(a=b=c\)

Bình luận (0)

Các câu hỏi tương tự
DH
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NM
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NV
Xem chi tiết
LH
Xem chi tiết