H24

a,b,c là các số thực dương. Tìm Min \(P=\dfrac{2a^2+ab}{\left(b+\sqrt{ca}+c\right)^2}+\dfrac{2b^2+bc}{\left(c+\sqrt{ab}+a\right)^2}+\dfrac{2c^2+ca}{\left(a+\sqrt{bc}+b\right)^2}\)

NL
13 tháng 1 2024 lúc 10:58

Bunhiacopxki:

\(\left(b+a+a\right)\left(b+c+\dfrac{c^2}{a}\right)\ge\left(b+\sqrt{ca}+c\right)^2\)

\(\Rightarrow\dfrac{2a^2+ab}{\left(b+\sqrt{ca}+c\right)^2}\ge\dfrac{2a^2+ab}{\left(2a+b\right)\left(b+c+\dfrac{c^2}{a}\right)}=\dfrac{a^2}{c^2+ab+bc}\)

Tương tự:

\(\dfrac{2b^2+bc}{\left(c+\sqrt{ca}+a\right)^2}\ge\dfrac{b^2}{a^2+ab+bc}\)

\(\dfrac{2c^2+ca}{\left(a+\sqrt{bc}+b\right)^2}\ge\dfrac{c^2}{b^2+ac+bc}\)

\(\Rightarrow P\ge\dfrac{a^2}{c^2+ab+ac}+\dfrac{b^2}{a^2+ab+bc}+\dfrac{c^2}{b^2+ac+bc}\)

\(\Rightarrow P\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=1\)

Dấu "=" xảy ra khi \(a=b=c\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
LH
Xem chi tiết
NN
Xem chi tiết
NN
Xem chi tiết
LH
Xem chi tiết
ND
Xem chi tiết
BH
Xem chi tiết
ND
Xem chi tiết