§1. Bất đẳng thức

LC

cho a b c > 0. Chứng minh các bất đẳng thức :

1, \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

2, \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\ge\frac{16}{a+b+c+d}\)

3, ( 1+a+b) (a+b+ab) \(\ge9ab\)

4, \(\left(\sqrt{a}+\sqrt{b}\right)^8\ge64ab\left(a+b\right)^2\)

5, \(3a^3+7b^3\ge9ab^2\)

6, \(\left(\sqrt{a}+\sqrt{b}\right)^2\ge2\sqrt{2\left(a+b\right)\sqrt{ab}}\)

H24
1 tháng 7 2020 lúc 19:55

1) Áp dụng BĐT AM-GM: \(VT\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9=VP\)

Đẳng thức xảy ra khi $a=b=c.$

2) Từ (1) suy ra \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\ge\frac{3^2}{a+b+c}+\frac{1^2}{d}\ge\frac{\left(3+1\right)^2}{a+b+c+d}=VP\)

Đẳng thức..

3) Ta có \(\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\) với $a,b,c>0.$

Cho $c=1$ ta nhận được bất đẳng thức cần chứng minh.

4) Đặt \(a=x^2,b=y^2,S=x+y,P=xy\left(S^2\ge4P\right)\) thì cần chứng minh $$(x+y)^8 \geqq 64x^2 y^2 (x^2+y^2)^2$$

Hay là \(S^8\ge64P^2\left(S^2-2P\right)^2\)

Tương đương với $$(-4 P + S^2)^2 ( 8 P S^2 + S^4-16 P^2 ) \geqq 0$$

Đây là điều hiển nhiên.

5) \(3a^3+\frac{7}{2}b^3+\frac{7}{2}b^3\ge3\sqrt[3]{3a^3.\left(\frac{7}{2}b^3\right)^2}=3\sqrt[3]{\frac{147}{4}}ab^2>9ab^2=VP\)

6) \(VT=\sqrt[4]{\left(\sqrt{a}+\sqrt{b}\right)^8}\ge\sqrt[4]{64ab\left(a+b\right)^2}=2\sqrt{2\left(a+b\right)\sqrt{ab}}=VP\)

Có thế thôi mà nhỉ:v

Bình luận (0)

Các câu hỏi tương tự
TV
Xem chi tiết
NA
Xem chi tiết
NC
Xem chi tiết
LC
Xem chi tiết
MH
Xem chi tiết
TN
Xem chi tiết
LC
Xem chi tiết
H24
Xem chi tiết
VH
Xem chi tiết