Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

H24

cho a,b,c > o thỏa mãn ab + bc + ca = 3. Cmr: \(\frac{a^3}{b^2+3}+\frac{b^3}{c^2+3}+\frac{c^3}{a^2+3}\ge\frac{3}{4}\)

NL
25 tháng 9 2019 lúc 21:36

\(3=ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\Rightarrow a+b+c\ge3\)

Ta có: \(\frac{a^3}{b^2+3}=\frac{a^3}{b^2+ab+bc+ca}=\frac{a^3}{\left(a+b\right)\left(b+c\right)}\)

Mặt khác \(\frac{a^3}{\left(a+b\right)\left(b+c\right)}+\frac{a+b}{8}+\frac{b+c}{8}\ge\frac{3a}{4}\)

Tương tự: \(\frac{b^3}{c^3+3}+\frac{a+c}{8}+\frac{b+c}{8}\ge\frac{3b}{4}\) ; \(\frac{c^3}{a^2+8}+\frac{a+b}{8}+\frac{a+c}{8}\ge\frac{3c}{4}\)

Cộng vế với vế:

\(P+\frac{1}{2}\left(a+b+c\right)\ge\frac{3}{4}\left(a+b+c\right)\)

\(\Rightarrow P\ge\frac{1}{4}\left(a+b+c\right)\ge\frac{3}{4}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (0)

Các câu hỏi tương tự
DA
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
QN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
KN
Xem chi tiết
DT
Xem chi tiết