Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

H24

cho a,b,c > 0 . Cmr:

\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge\frac{a+b+c}{3}\)

NL
22 tháng 6 2020 lúc 7:00

\(\frac{a^3}{a^2+ab+b^2}=a-\frac{ab\left(a+b\right)}{a^2+ab+b^2}\ge a-\frac{ab\left(a+b\right)}{3ab}=\frac{2a}{3}-\frac{b}{3}\)

Tương tự: \(\frac{b^3}{b^2+bc+c^2}\ge\frac{2b}{3}-\frac{c}{3}\) ; \(\frac{c^3}{c^2+ca+a^2}\ge\frac{2c}{3}-\frac{a}{3}\)

Cộng vế với vế: \(VT\ge\frac{a+b+c}{3}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
DA
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết