Cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O). Gọi H là giao điểm của hai đường cao BE và CF, AD của tam giác ABC ( NAB, MAC )
a) Chứng minh tứ giác BCEF nội tiếp đường tròn và AO vuông góc EF
b) Kẻ đường kính AK của đường tròn (O). Chứng minh AD.AK = AB. AC
c) Đường thẳng EF cắt đường tròn (O) tại N và M ( E nằm giữa F và M ).Chứng minh AN là tiếp tuyến của đường tròn ngoại tiếp tam giác NHD
1/ Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O;R) H là giao điểm 2 đường cao BD,CE của tam giác ABC
a) Chứng minh tứ giác BCDE nội tiếp. Xác định tâm đường tròn
b) F là giao điểm AH,BC. Vẽ đường kính AK của đường tròn (O). Chứng minh góc AFB=góc ACK
c) Chứng minh tứ giác BHCK là hình bình hành và H,I,K thẳng hàng
cho tam giác abc có 3 góc nhọn nội tiếp đường tròn (o) vẽ các đường cao be,cf của tam giác ấy gọi h là giao điểm của be và cf kẻ đg kính bk của (o)
a) Chứng minh tứ giác BCEF là tứ giác nội tiếp
b) chứng minh tứ giác AHCK là hình bình hành
c)đường tròn đường kính AC cắt BE ở M đường tròn đường kính AB cặt CF ở N.chứng minh AM=AN
Xin các cao thủ võ lâm giúp em giải bài này
Cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O). Đường tròn đường kính AB cắt BC, AC lần lượt tại D và E. Gọi H là giao điểm của AD và BE
a\Chứng minh tứ giác CEHD nội tiếp
b\Đường thẳng qua E và vuông góc với AB cắt AD tại L. F là giao điểm CH và AB. Chứng minh AL×AB= Ah×AF
C\ Gọi S là giao điểm của OA và EL, M là Trung điểm của SH. Chứng minh M,E,F thẳng hàng
Cho tam giác ABC có ba cạnh góc nhọn, nội tiếp đường tròn (O). Vẽ các đường cao BE, CF của tam giác ABC. Gọi H là giao điểm của BE và CF. Kẻ đường kính BK của đường tròn (O)
a)Chứng monh tứ giác BCEF nội tiếp đường tròn.
b)Chứng minh tứ giác AHCK là hình bình hành.
c)Đường tròn đường kính AC cắt BE tại M, đường tròn đường kính AB cắt CF tại N. Chứng minh AM=AN.
MỌI NGƯỜI GIÚP MÌNH GIẢI CÂU b, c dùm đi ạ
Cho tam giác ABC nhọn nội tiếp đường tròn (O) (AB < AC), đường tròn tâm M đường kính BC cắt AB, AC lần lượt tại F và E.Gọi H là giao điểm BE và CF, D là giao điểm của AH và BC.Vẽ đường kính AK của (O). a) Chứng minh AD là đường cao của tam giác ABC và tứ giác BFHD nội tiếp đường tròn. b) Đường thẳng EF cắt đường thẳng BC tại S, cắt (O) tại P và Q (nằm giữa S và Q). Chứng minh SP.SQ = SF.SE c) Gọi L là điểm đối xứng của C qua AK, AL cắt EF tại N.Chứng minh L thuộc (O) và DHNL nội tiếp.
giúp mình giải câu c. tứ giác DHNL nội tiếp
Cho tam giác nhọn ABC (AB < AC ) nội tiếp đường tròn (O). Kẻ đường cao AH của tam giác ABC và đường kính AD của đường tròn (O). Từ hai điểm B và C kẻ BE ⊥ AD tại E và CF ⊥ AD tại F.
a. Chứng minh rằng tứ giác ABHE nội tiếp.
b. Chứng minh rằng HE / /CD.
c. Gọi I là trung điểm của BC. Chứng minh rằng IE = IF .
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O(AB<AC), có ba đường cao AD, BE, CF cắt nhau tại H ( D thuộc BC, E thuộc AC, F thuộc AB)
a) Chứng minh tứ giác BFEC và tứ giác BFHD là các tứ giác nội tiếp
b) Vẽ đường kính AK của (O). Chứng minh AB.AC=AD.AK
Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O). Kẻ AD là đường kính của (O), AH vuông góc với BC tại H, BE vuông góc với AD tại E. Gọi G là giao điểm của AH với (O).
a) Chứng minh tứ giác ABHE nội tiếp và GD ∥ BC;
b) Gọi N là giao điểm giữa HE và AC. Chứng minh tam giác AHN vuông tại N;
c) Tia phân giác của góc BAC cắt đường tròn (O) tại F. Gọi M là giao điểm của OF và BC, K là trung điểm của AB, I là giao điểm của KM và HE. Chứng minh rằng AB·EI = AE·EM.