SG

Cho a;b;c là các số thực dương thỏa mãn abc = 1. Tìm GTLN của biểu thức:

\(T=\frac{a}{b^4+c^4+a}+\frac{b}{a^4+c^4+b}+\frac{c}{a^4+b^4+c}\)

AH
3 tháng 3 2017 lúc 12:33

Lời giải:
Trước tiên ta đi chứng minh BĐT phụ là:

Với \(a,b>0\) thì \(a^2+b^4\geq ab(a^2+b^2)\)

Cách CM:

BĐT trên tương đương với: \((a-b)^2(a^2+ab+b^2)\geq 0\) (luôn đúng)

Quay trở về bài toán chính: Áp dụng BĐT phụ trên :

\(\Rightarrow \frac{c}{a^4+b^4+c}\leq \frac{c}{ab(a^2+b^2)+c^2ab}=\frac{c}{ab(a^2+b^2+c^2)}=\frac{c^2}{a^2+b^2+c^2}\)

Thực hiện tương tự với các phân thức còn lại và cộng theo vế:

\(\Rightarrow T\leq \frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\) (đpcm)

Dấu bằng xảy ra khi $a=b=c=1$

Bình luận (0)

Các câu hỏi tương tự
HY
Xem chi tiết
MC
Xem chi tiết
PA
Xem chi tiết
NC
Xem chi tiết
C1
Xem chi tiết
NV
Xem chi tiết
AV
Xem chi tiết
PA
Xem chi tiết
TT
Xem chi tiết